首页> 外文学位 >A nested finite element methodology for virtual qualification of area-array microelectronic interconnect assemblies.
【24h】

A nested finite element methodology for virtual qualification of area-array microelectronic interconnect assemblies.

机译:一种用于区域阵列微电子互连组件虚拟鉴定的嵌套有限元方法。

获取原文
获取原文并翻译 | 示例

摘要

A N&barbelow;ested F&barbelow;inite E&barbelow;lement M&barbelow;ethodology (NFEM) is proposed in this dissertation, for capturing localized stress gradients in complex structures, without a significant increase in computational time and degrees of freedom. A single main finite element is refined locally by superposing nested sub-elements to capture local gradients of stress and strain. The local discretization offers a distinct advantage in terms of reducing the degrees of freedom as no further sub-division of a main element is required except at the point of interest. This innovative discretization is made possible because of the re-formulation of the potential energy with a “cut-and-replace” technique, which involves replacing a cut volume of a main element with an equivalent volume of a nested sub-element containing enhanced displacement fields. The nested sub-elements, apart from capturing the sharp gradients of the displacement field, can also be used to model material heterogeneities. The material of the sub-elements could range from plastic domains to voids to rigid inclusions.; The NFEM tool is developed to perform thermomechanical elastic-creep analysis and vibration-induced elasto-plastic analysis of two emerging area-array interconnect assemblies: flip chip on board assembly (FCOB) and chip scale ball grid array assembly (CSP-BGA). The various practical applications of the nested sub-element method are illustrated through these case studies. This dissertation focuses on the durability of solder interconnects as these are potential weak links in the assemblies. Load-stepping and/or time-stepping techniques are used to obtain piece-wise linear approximations to the nonlinear elasto-plastic and elastic-creep deformation histories. The stress, strain and energy density fields are calculated for each increment and are accumulated throughout the loading and unloading history. An energy partitioning fatigue model is used to estimate fatigue endurance of the solder joint, based on cyclic energy densities obtained from NFEM. The accuracy of the proposed method is found to be comparable to conventional finite element results (generated with significantly higher mesh density) and, where applicable, to experimental results. Computational time of NFEM for the case studies analyzed in this dissertation is observed to be significantly lower than conventional finite element analysis. This work also demonstrates the ability of NFEM to model solder defects such as (a) voids, (b) solder volume and (c) component misalignment.
机译:本文提出了一种N-ested F&inite E&barétlementM&barbethodology(NFEM),用于捕获复杂结构中的局部应力梯度,而不会显着增加计算时间和自由度。通过叠加嵌套的子元素来捕获应力和应变的局部梯度,可以对单个主要有限元进行局部精修。局部离散化在减少自由度方面提供了明显的优势,因为除了在关注点之外,不需要进一步细分主元素。这种创新的离散化是有可能的,这是因为通过“剪切和替换”技术重新构造了势能,该技术涉及用等体积的嵌套子元素替换包含等效位移的主元素的剪切体积,该嵌套子元素包含增强的位移领域。除了捕获位移场的陡峭梯度外,嵌套子元素还可以用于建模材料异质性。子元素的材料范围可以从塑性区域到空隙到刚性夹杂物。 NFEM工具的开发目的是对两种新兴的面阵互连组件进行热机械弹性蠕变分析和振动诱导的弹塑性分析:倒装芯片板上组件(FCOB)和芯片级球栅阵列组件(CSP-BGA)。通过这些案例研究说明了嵌套子元素方法的各种实际应用。本文主要研究焊料互连的耐用性,因为它们是组件中潜在的薄弱环节。负载步进和/或时间步进技术用于获得非线性弹塑性和弹性蠕变变形历史的分段线性近似。计算每个增量的应力,应变和能量密度场,并在整个加载和卸载历史中进行累积。基于从NFEM获得的循环能量密度,能量分配疲劳模型用于估算焊点的疲劳强度。发现所提出方法的准确性可与常规有限元结果(以明显更高的网格密度生成)相媲美,并且在适用情况下可与实验结果相提并论。本文研究的案例研究中,NFEM的计算时间明显低于传统的有限元分析。这项工作还展示了NFEM建模焊料缺陷的能力,例如(a)空隙,(b)焊料体积和(c)组件未对准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号