首页> 外文学位 >Rotorcraft In-Plane Noise Reduction Using Active/Passive Approaches with Induced Vibration Tracking
【24h】

Rotorcraft In-Plane Noise Reduction Using Active/Passive Approaches with Induced Vibration Tracking

机译:使用主动/被动方法和感应振动跟踪降低旋翼飞机的平面噪声

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive study of the use of active and passive approaches for in-plane noise reduction, including the vibrations induced during noise reduction, was conducted on a hingeless rotor configuration resembling the MBB BO-105 rotor. First, a parametric study was performed to examine the effects of rotor blade stiffness on the vibration and noise reduction performance of a 20%c plain trailing edge flap and a 1.5%c sliding microflap. This was accomplished using a comprehensive code AVINOR (for Active VIbration and NOise Reduction). A two-dimensional unsteady reduced order aerodynamic model (ROM), using the Rational Function Approximation approach and CFD-based oscillatory aerodynamic load data, was used in the comprehensive code. The study identified a hingeless blade configuration with torsional frequency of 3.17/rev as an optimum configuration for studying vibration and noise reduction using on-blade control devices such as flaps or microflaps.;Subsequently, a new suite of computational tools capable of predicting in-plane low frequency sound pressure level (LFSPL) rotorcraft noise and its control was developed, replacing the acoustic module WOPWOP in AVINOR with a new acoustic module HELINOIR (for HELIcopter NOIse Reduction), which overcomes certain limitations associated with WOPWOP. The new suite, consisting of the AVINOR/HELINOIR combination, was used to study active flaps, as well as microflaps operating in closed-loop mode for in-plane noise reduction. An alternative passive in-plane noise reduction approach using modification to the blade tip in the 10%R outboard region was also studied. The new suite consisting of the AVINOR/HELINOIR combination based on a compact aeroacoustic model was validated by comparing with wind tunnel test results, and subsequently verified by comparing with computational results.;For active control, the in-plane noise reduction obtained with a single 20%c plain trailing edge flap during level flight at a moderate advance ratio was examined. Different configurations of far-field and near-field feedback microphone locations were examined to develop a fundamental understanding of the feedback microphone locations on the noise reduction process A near-field microphone located on the tip of a nose boom was found to produce a LFSPL reduction of up to 6dB. However, this noise reduction was accompanied by an out-of-plane noise increase of 18dB and 60% increase in vertical hub shear. For passive control, three tip geometries having sweep, dihedral, and anhedral, were considered. The tip dihedral reduced LFSPL by up to 2dB without a vibratory load penalty. However, this was accompanied by an increase in the mid frequency sound pressure levels (MFSPL). The tip sweep and tip anhedral produced an increase in in-plane LFSPL below the horizon. A comparison of the active and passive approaches indicated that active approaches implemented by a plain flap with a feedback microphone located on the nose boom is superior to the passive control approaches. However, there is a general trade-off between LFSPL reduction, MFSPL generation and vibratory hub loads induced by noise control.
机译:在类似于MBB BO-105转子的无铰链转子配置上,对使用主动和被动方法进行平面内降噪(包括降噪期间引起的振动)进行了全面研究。首先,进行了参数研究,以检查转子叶片刚度对20%c的普通后缘襟翼和1.5%c的滑动微瓣的振动和降噪性能的影响。这是通过使用全面的代码AVINOR(用于主动振动和降噪)来完成的。综合代码中使用了二维的非稳态降阶气动模型(ROM),该模型使用有理函数近似方法和基于CFD的振荡气动载荷数据。这项研究确定了扭转频率为3.17 / rev的无铰链叶片构型,这是研究使用襟翼或微襟翼等叶片上控制装置研究振动和降噪的最佳构型;随后,一套新的计算工具能够预测飞机的低频声压级(LFSPL)旋翼飞机噪声及其控制得到了发展,用新的声学模块HELINOIR(用于直升机降噪)取代了AVINOR中的声学模块WOPWOP,克服了与WOPWOP相关的某些限制。由AVINOR / HELINOIR组合组成的新套件用于研究活动襟翼以及以闭环模式运行的微型襟翼,以降低飞机内的噪声。还研究了一种替代的被动式平面内降噪方法,该方法通过对10%R外侧区域中的叶尖进行修改来实现。通过与风洞测试结果进行比较,验证了由基于紧凑型航空声学模型的AVINOR / HELINOIR组合组成的新套件,随后通过与计算结果进行了比较。对于主动控制,通过单次获得平面内降噪在水平飞行期间以适度的推进比检查了20%c的平原后缘襟翼。研究了远场和近场反馈麦克风位置的不同配置,以便对降噪过程中的反馈麦克风位置有基本的了解。发现位于鼻梁末端的近场麦克风可降低LFSPL高达6dB。但是,这种降噪伴随着18dB的平面外噪声增加和垂直轮毂剪切力增加60%。对于被动控制,考虑了具有扫掠,二面体和无面体的三个尖端几何形状。尖端二面角可将LFSPL降低2dB,而不会产生振动载荷损失。但是,这伴随着中频声压级(MFSPL)的增加。尖端扫掠和尖端反面使地平线以下的平面内LFSPL增加。主动方法和被动方法的比较表明,由带有位于鼻梁上的反馈麦克风的普通襟翼实现的主动方法优于被动控制方法。但是,在降低LFSPL,降低MFSPL的产生和由噪声控制引起的振动轮毂载荷之间,通常需要权衡取舍。

著录项

  • 作者

    Chia, Miang Hwee.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 290 p.
  • 总页数 290
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号