首页> 外文学位 >Towards a genetics-based adaptive agent to support flight testing.
【24h】

Towards a genetics-based adaptive agent to support flight testing.

机译:迈向基于遗传学的自适应代理以支持飞行测试。

获取原文
获取原文并翻译 | 示例

摘要

Although the benefits of aircraft simulation have been known since the late 1960s, simulation almost always entails interaction with a human test pilot. This “pilot-in-the-loop” simulation process provides useful evaluative information to the aircraft designer and provides a training tool to the pilot. Emulation of a pilot during the early phases of the aircraft design process might provide designers a useful evaluative tool. Machine learning might emulate a pilot in a simulated aircraft/cockpit setting. Preliminary work in the application of machine learning techniques, such as reinforcement learning, to aircraft maneuvering have shown promise. These studies used simplified interfaces between machine learning agent and the aircraft simulation. The simulations employed low order equivalent system models. High-fidelity aircraft simulations exist, such as the simulations developed by NASA at its Dryden Flight Research Center. To expand the applicational domain of reinforcement learning to aircraft designs, this study presents a series of experiments that examine a reinforcement learning agent in the role of test pilot.; The NASA X-31 and F-106 high-fidelity simulations provide realistic aircraft for the agent to maneuver. The approach of the study is to examine an agent possessing a genetic-based, artificial neural network to approximate long-term, expected cost (Bellman value) in a basic maneuvering task. The experiments evaluate different learning methods based on a common feedback function and an identical task. The learning methods evaluated are: Q-learning, Q(λ)-learning, SARSA learning, and SARSA(λ) learning.; Experimental results indicate that, while prediction error remain quite high, similar, repeatable behaviors occur in both aircraft. Similar behavior exhibits portability of the agent between aircraft with different handling qualities (dynamics). Besides the adaptive behavior aspects of the study, the genetic algorithm used in the agent is shown to play an additive role in the shaping of the artificial neural network to the prediction task.
机译:尽管自1960年代末以来就已经知道飞机模拟的好处,但是模拟几乎总是需要与人工测试飞行员进行交互。这种“在环飞行员”模拟过程为飞机设计人员提供了有用的评估信息,并为飞行员提供了培训工具。在飞机设计过程的早期阶段模拟飞行员可能会为设计人员提供有用的评估工具。机器学习可以在模拟的飞机/驾驶舱环境中模拟飞行员。将机器学习技术(例如强化学习)应用到飞机操纵中的初步工作已显示出希望。这些研究使用了机器学习代理和飞机仿真之间的简化接口。仿真采用低阶等效系统模型。存在高保真飞机模拟,例如NASA在Dryden飞行研究中心开发的模拟。为了将强化学习的应用领域扩展到飞机设计中,本研究提出了一系列实验,以检查强化学习代理在试飞员中的作用。 NASA X-31和F-106高保真仿真为特工提供了逼真的飞机。该研究的方法是检查一个具有基于遗传的人工神经网络的代理,以估计基本机动任务中的长期预期成本(贝尔曼值)。实验基于共同的反馈函数和相同的任务评估了不同的学习方法。评估的学习方法是:Q学习,Q(λ)学习,SARSA学习和SARSA(λ)学习。实验结果表明,尽管预测误差仍然很高,但两架飞机都发生了类似的可重复行为。相似的行为表现出代理在具有不同处理质量(动力学)的飞机之间的可移植性。除了研究的自适应行为方面,还显示了用于代理的遗传算法在预测任务的人工神经网络成形中起着附加作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号