首页> 外文学位 >Fundamental studies on ultra-thin oxynitrides and nitrides of silicon and silicon-germanium.
【24h】

Fundamental studies on ultra-thin oxynitrides and nitrides of silicon and silicon-germanium.

机译:硅和硅锗的超薄氧氮化物和氮化物的基础研究。

获取原文
获取原文并翻译 | 示例

摘要

New materials development is the enabler of technological breakthroughs, leading to advanced microelectronic devices, continuing miniaturization, conservation of power, and reduction in cost. The aggressive scaling down of silicon integrated circuits requires reliable ultra-thin dielectrics for use in complementary-metal-oxide-semiconductor (CMOS) transistors in the sub-0.1mum era. In this regard, growth of nitrogen-based dielectrics (oxynitride and nitride) on silicon (Si) and silicon-germanium (SiGe) is being extensively studied. Since the presence of nitrogen imparts better properties to these films as compared to the oxide, process-property relationships are developed to control the concentration profile and bonding states of nitrogen in these films. Effect of using nitrous oxide as opposed to nitric oxide for the growth of these films on chemical and basic electrical properties is discussed. It is proposed that a critical condition is required to obtain a bimodal concentration profile of nitrogen in ultra-thin oxynitrides of Si and SiGe. Also, wafer-to-wafer uniformity in nitrogen concentration profiles is studied by identifying the rate-limiting steps affecting the incorporation of nitrogen in oxynitrides grown along the length of a furnace. Similarly, the effect of furnace dimensions on nitrogen concentration profiles in silicon oxynitrides is also investigated. Further, a process sequence is developed to reduce charge and interface trap densities in silicon nitride films, grown thermally using ammonia in a conventional furnace. All films are grown in a horizontal furnace at 800--900°C and 1 atm. Film properties are investigated using ellipsometry, x-ray photoelectron spectroscopy, secondary ion mass spectrometry, and surface charge analysis, while mass spectrometry is used to find the gas-phase composition. Besides enhancing the fundamental understanding of the mechanisms behind the growth of such films, these findings can help significantly towards engineering future dielectrics for the application of interest.
机译:新材料的开发是技术突破的推动力,从而导致了先进的微电子器件,持续的小型化,节电和成本降低。大规模缩小硅集成电路规模需要可靠的超薄电介质,以用于0.1微米以下时代的互补金属氧化物半导体(CMOS)晶体管。在这方面,正在广泛地研究基于氮的电介质(氮氧化物和氮化物)在硅(Si)和硅锗(SiGe)上的生长。由于氮的存在与氧化物相比赋予这些膜更好的性能,因此发展了工艺-特性关系来控制这些膜中氮的浓度分布和键合状态。讨论了使用一氧化二氮(相对于一氧化氮)来生长这些膜对化学和基本电学性质的影响。提出了在Si和SiGe的超薄氮氧化物中获得氮的双峰浓度曲线需要一个临界条件。另外,通过确定影响氮沿炉长生长的氮的掺入的限速步骤,研究了氮浓度曲线中晶片对晶片的均匀性。同样,还研究了炉子尺寸对氮氧化硅中氮浓度分布的影响。此外,开发了减少在常规炉中使用氨热生长的氮化硅膜中的电荷和界面陷阱密度的工艺流程。所有薄膜都在800--900°C和1个大气压的水平炉中生长。使用椭圆光度法,X射线光电子能谱,二次离子质谱和表面电荷分析来研究膜的性能,而质谱则用于查找气相组成。除了增强对此类薄膜生长机理的基本理解之外,这些发现还可以极大地有助于工程化未来的电介质,从而引起人们的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号