首页> 外文学位 >Coherent optical nonlinearities in semiconductor microstructures.
【24h】

Coherent optical nonlinearities in semiconductor microstructures.

机译:半导体微结构中的相干光学非线性。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents investigations of fundamental optical nonlinearities in semi-conductor microstructures. Two distinct effects are studied. In the first part the excitonic optical Stark effect in InGaAs and GaAs multiple quantum-well structures is investigated by means of pump-probe spectroscopy. For nonresonant excitation below the excitonic transition the direction of the shift of the resonance depends on the polarization of the pump and probe pulses. In particular, for anti-circular polarization a surprising red-shift is observed. For resonant excitation, induced absorption energetically above and below the exciton transition and bleaching of the resonance is found. Experiments using both resonant and nonresonant excitation reveal the importance of bound and unbound two-exciton states in absorption changes of the 1s heavy-hole exciton resonance. It is found that higher-order Coulomb contributions determine the intensity as well as the time dependence of the differential excitonic absorption. In addition, the influence of light-hole excitons is analyzed. It is shown that the direction of the optical Stark shift for nonresonant excitation depends also sensitively on the heavy-hole to light-hole splitting and the detuning of the pump pulse. For very high pump intensities and nonresonant excitation the absorption is split when a circularly polarized pump and a linearly polarized probe beam are used. For co-circular excitation traces of hyper-Raman gain are observed.; In the second part of this dissertation, the nonlinear optical response of semiconductor microcavities in the nonperturbative regime is studied in resonant single-beam transmission and pump-probe experiments. In both types of experiment, a pronounced third transmission peak lying spectrally between the two normal modes is observed. Its dependence on the probe intensity, pump intensity, pump-probe delay, exciton-cavity detuning and pump detuning is investigated. For single-beam transmission, the energy of the third peak parallels the position of the cavity resonance. It is more pronounced for circularly polarized excitation and lasts longer than the two normal modes. For pump-probe experiments, the third peak increases with decreasing probe intensity and increasing pump intensity. Its energy is close to the low-energy side of the pump spectrum and virtually unaffected by the cavity-exciton detuning. The appearance of the third peak requires temporal overlap of pump and probe pulses. The origin of this complex nonlinearity is the quantum nature of light, which induces intraband polarizations in the presence of a coherent driving field and a finite carrier density. It is found that the coupling of the intraband polarizations via guided modes to the polarization of the fundamental longitudinal mode is responsible for the third transmission peak. A fully quantized theory reproduces the experimental observations.
机译:本文提出了半导体微结构中基本光学非线性的研究。研究了两种不同的效果。在第一部分中,通过泵浦探针光谱法研究了InGaAs和GaAs多量子阱结构中的激子光学斯塔克效应。对于低于激子跃迁的非共振激发,共振的移动方向取决于泵浦脉冲和探针脉冲的极化。特别地,对于反圆极化,观察到令人惊讶的红移。对于共振激发,发现在激子跃迁之上和之下在能量上诱发的吸收和共振的漂白。使用共振和非共振激发的实验表明,结合和未结合的两个激子态在1s重孔激子共振吸收变化中的重要性。发现高阶库仑贡献决定了微分激子吸收的强度以及时间依赖性。另外,分析了光洞激子的影响。结果表明,非共振激发的光学斯塔克位移的方向还敏感地取决于重孔到轻孔的分裂和泵浦脉冲的失谐。对于非常高的泵浦强度和非谐振激发,当使用圆偏振泵浦和线性偏振探测光束时,吸收会分开。对于同圆激励,观察到超拉曼增益的迹线。在论文的第二部分,通过共振单光束传输和泵浦探针实验研究了半导体微腔在非微扰状态下的非线性光学响应。在两种类型的实验中,观察到明显的第三透射峰在光谱上位于两个正常模式之间。研究了其对探针强度,泵浦强度,泵浦探针延迟,激子腔谐振和泵浦失谐的依赖性。对于单光束传输,第三个峰值的能量与腔共振的位置平行。它对于圆极化激发更为明显,并且比两种正常模式的持续时间更长。对于泵浦探针实验,第三个峰随探针强度的降低和泵浦强度的增加而增加。它的能量接近泵浦光谱的低能量一侧,并且几乎不受腔激子失谐的影响。第三个峰值的出现需要泵浦脉冲和探测脉冲的时间重叠。这种复杂的非线性的起源是光的量子性质,在存在相干驱动场和有限载流子密度的情况下,光会引起带内极化。已经发现,通过引导模式的带内偏振与基本纵向模式的偏振的耦合是第三透射峰的原因。完全量化的理论再现了实验观察结果。

著录项

  • 作者

    Brick, Peter.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号