首页> 外文学位 >Engineering antibody therapeutics: Approaches to neutralizing bacterial toxins.
【24h】

Engineering antibody therapeutics: Approaches to neutralizing bacterial toxins.

机译:工程抗体疗法:中和细菌毒素的方法。

获取原文
获取原文并翻译 | 示例

摘要

Work during the past ten years has set the stage for the Golden Era of protein engineering, during which hundreds of designer proteins will be developed for therapeutic, industrial and technological uses. Most importantly, we now understand the basic science underlying many systems well enough to effectively engineer proteins to produce a desired effect. Antibodies are a common target for engineering efforts because their high affinity and specificity for a binding partner renders them one of the most useful classes of molecules for biotechnology and biomedical applications. Engineering can increase antibody affinity, specificity and stability, reduce immunogenicity and optimize pharmacokinetic parameters.;This work focuses on antibodies that bind and neutralize the bacterial toxins of Bacillus anthracis (protective antigen, PA) and Bordetella pertussis (pertussis toxin, PT), and these antibodies have potential for use as both diagnostic and therapeutic reagents. Efforts have been concentrated in two areas: (1) improving and evaluating antibody neutralization in vivo and in vitro by manipulating biophysical parameters, and (2) identifying the molecular determinants of binding to predict antibody-antigen interactions.;The role of affinity has been addressed by generating a panel of an anti-anthrax toxin scFv which range in affinity from >500 nM to 0.25 nM. The generation of multimeric (more than one binding site per molecule) and higher molecular weight antibodies has been explored to evaluate the effects of avidity and biodistribution in vivo. Neutralization of an anthrax toxin challenge was shown to correlate with antibody affinity both in an in vitro assay and an in vivo rat model. Importantly, an affinity matured scFv is more protective in vivo than lower affinity scFvs, and a higher molecular weight version compares favorably to the parental monoclonal antibody. Similarly, increased molecular weight of an antibody conferred increased protection. Using anti-PT antibodies, low stability has been shown to significantly compromise neutralizing ability in vitro, while high stability appears to be able to compensate for less favorable binding kinetics. This work comprises the first systematic study of the effects of engineering anti-toxin antibodies, and has demonstrated that protein engineering techniques can be used to develop highly potent anti-toxin preparations.
机译:过去十年的工作为蛋白质工程的黄金时代奠定了基础,在此期间,将开发数百种设计蛋白质用于治疗,工业和技术用途。最重要的是,我们现在充分理解了许多系统的基础科学,足以有效地改造蛋白质以产生所需的效果。抗体是工程努力的共同目标,因为它们对结合伴侣的高亲和力和特异性使其成为生物技术和生物医学应用中最有用的分子类别之一。工程可以提高抗体的亲和力,特异性和稳定性,降低免疫原性并优化药代动力学参数。这项工作的重点是结合并中和炭疽芽孢杆菌(保护性抗原,PA)和百日咳博德氏杆菌(百日咳毒素)的细菌毒素的抗体,以及这些抗体具有用作诊断和治疗试剂的潜力。努力集中在两个领域:(1)通过操纵生物物理参数改善和评估体内外抗体中和,(2)确定结合的分子决定因素以预测抗体-抗原相互作用。通过产生一组抗亲毒素毒​​素scFv来解决该问题,亲和力范围从> 500 nM至0.25 nM。已经研究了多聚体(每个分子有一个以上的结合位点)和更高分子量的抗体的产生,以评估体内亲和力和生物分布的影响。在体外试验和体内大鼠模型中,炭疽毒素攻击的中和都与抗体亲和力相关。重要的是,亲和力成熟的scFv在体内比低亲和力的scFvs具有更好的保护性,而更高的分子量版本则比亲本单克隆抗体有利。类似地,抗体分子量的增加赋予保护作用。使用抗PT抗体,已显示出低稳定性会显着损害体外的中和能力,而高稳定性似乎能够弥补不利的结合动力学。这项工作包括对工程抗毒素抗体的作用的首次系统研究,并证明蛋白质工程技术可用于开发高效的抗毒素制剂。

著录项

  • 作者

    Maynard, Jennifer Anne.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Chemical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号