首页> 外文学位 >Degradation and breakdown of ultrathin gate oxide.
【24h】

Degradation and breakdown of ultrathin gate oxide.

机译:超薄栅极氧化物的降解和分解。

获取原文
获取原文并翻译 | 示例

摘要

The MOSFET critical dimension shrinks more rapidly than its applied voltage for state-of-the-art IC technology. Aggressive scaling of the oxide thickness is necessary for enhancing circuits speed, thereby offsetting the disadvantage of supply voltage reduction. The electric field in the gate oxide is expected to increase and this may pose a potential reliability concern. The time-dependent dielectric breakdown (TDDB) is a major cause of failure in small dimension devices. A good understanding of the physical effects resulting from the application of large electric fields to thin oxides is therefore necessary.; In this thesis, the impact of post-metallization deuterium anneal on oxide reliability will be presented. From experiments, it is found that deuterium anneal can effectively suppress the interface state generation from hot electron bombardment, but has no effects in improving the oxide reliability, such as time-to-breakdown or stress-induced leakage current. Therefore, this finding suggests that a model for gate oxide breakdown that involves release of interfacial hydrogen may not be accurate.; Gate oxide failure is one of the failure mechanisms during an electrostatic discharge (ESD) event. For thick oxide bias under high field, the time-to-breakdown is expected to follow the 1/E model. However, for ultrathin oxide stressed under low voltage, the degradation and breakdown are determined by stress voltage instead of electric field. Thus, the damage of ultrathin gate oxides under ESD stress conditions needs to be reexamined. In this thesis, time-to-breakdown of ultrathin gate oxides is investigated down to the nanosecond time regime. The 1/E model best fits the time-to-breakdown data. Latent damage is also examined, and it is seen that the trap generation rate is a function of stress pulse width for nanosecond and microsecond stress pulses. In addition, thermal simulation has been carried out to study the temperature rise during ESD events. The pulse-width dependent trap generation rate has been attributed to time-dependent self-heating in the oxide. Thus, dc data should not be used to predict the degradation rate under ESD-type stress conditions.; For ultrathin oxides, a new type of failure mode, soft breakdown, has been observed. The characteristics of this kind of failure are often identified by a large increase of gate signal noise level. It has been proposed that there is a threshold power that divides soft and hard breakdown. In this thesis, time-to-breakdown of ultrathin gate oxide is tested, and the power dissipation after breakdown is obtained. Based on the critical power value that separates the soft and hard breakdown, thermal simulation is done using finite element analysis. The effects of interfacial thermal resistance and nanoscale heat conduction are included in the thermal model. The simulation results show that the diameter of leakage path is between 0.1 and 0.5 nm in order to raise the temperature close to glass transition temperature of SiO2. At this temperature, the structure change of SiO2 could leads to the breakdown of oxide.
机译:MOSFET的临界尺寸比其最新IC技术所施加的电压减小得更快。为了提高电路速度,必须对氧化层厚度进行大规模缩放,从而弥补了电源电压降低的缺点。预计栅极氧化物中的电场会增加,这可能会引起潜在的可靠性问题。时间相关的介电击穿(TDDB)是小尺寸设备发生故障的主要原因。因此,必须充分了解将大电场施加于薄氧化物所产生的物理效应。本文提出了金属化后氘退火对氧化物可靠性的影响。从实验中发现,氘退火可以有效地抑制热电子轰击产生的界面态,但对提高氧化物的可靠性(例如击穿时间或应力引起的漏电流)没有影响。因此,这一发现表明,涉及界面氢释放的栅极氧化物击穿模型可能并不准确。栅极氧化物故障是静电放电(ESD)事件期间的故障机制之一。对于高电场下的厚氧化物偏压,击穿时间预计将遵循1 / E 模型。然而,对于在低压下承受应力的超薄氧化物,其降解和击穿取决于应力电压而不是电场。因此,需要重新检查在ESD应力条件下超薄栅氧化物的损坏。本文研究了超薄栅氧化物的击穿时间,直至纳秒级。 1 / E 模型最适合分解时间数据。还检查了潜在的损坏,并且可以看出,陷阱产生速率是纳秒和微秒应力脉冲的应力脉冲宽度的函数。此外,已经进行了热仿真以研究ESD事件期间的温度上升。与脉冲宽度有关的陷阱产生速率已归因于氧化物中与时间有关的自热。因此,不应将直流数据用于预测ESD型应力条件下的退化率。对于超薄氧化物,已经观察到一种新型的失效模式,即软击穿。这种故障的特征通常由栅极信号噪声电平的大幅提高来识别。已经提出存在将软击穿和硬击穿分开的阈值功率。本文对超薄栅氧化物的击穿时间进行了测试,获得了击穿后的功耗。根据将软击穿和硬击穿分开的临界功率值,使用有限元分析进行热仿真。界面热阻和纳米级导热的影响包括在热模型中。仿真结果表明,为了使温度升高至接近SiO 2 的玻璃化转变温度,泄漏路径的直径在0.1至0.5nm之间。在此温度下,SiO 2 的结构变化可能导致氧化物的分解。

著录项

  • 作者

    Wu, Jie.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号