首页> 外文学位 >Mechanical stimulation of an in vitro articular cartilage defect repair model.
【24h】

Mechanical stimulation of an in vitro articular cartilage defect repair model.

机译:机械刺激的体外关节软骨缺损修复模型。

获取原文
获取原文并翻译 | 示例

摘要

Articular cartilage lines the opposing surfaces of articulating joints, providing a durable, low-friction bearing surface. Due to its low cellularity and lack of vasculature, injuries to cartilage frequently fail to heal, resulting in chronic pain and debility. Current treatment options for advanced osteoarthritis are limited, and generally do little to prevent further degradation of the joint. Using tissue engineering principles, it may be possible to develop bioartificial tissues which could be implanted in the joint, effectively repairing the damage and preventing further breakdown.; This dissertation included numerous studies investigating the development of tissue engineered cartilage for joint repair. Specifically, they looked at the effects of mechanical compression on tissue engineered cartilage constructs in vitro, with the hope of gaining new insights into how the mechanical environment may be used to enhance and direct construct growth. Engineered cartilages were cultured under oscillatory compression, and the resulting changes in gene expression and matrix synthesis were measured. The effects of mechanical compression were found to vary with different scaffold systems. In some tissue engineered environments, oscillatory compression stimulated cartilage gene expression and matrix synthesis. In other environments, oscillatory compression inhibited matrix accumulation and stimulated catabolic activity.; These studies also investigated the use of an in vitro cartilage defect repair model to estimate how engineered tissues may respond to biological and biomechanical stimuli in the treated joint. Cartilage repair was modeled using a hybrid culture system, consisting of an annulus of explanted articular cartilage surrounding a central defect. This defect was filled with an engineered cartilage, and the resulting repair was assessed using various biochemical and mechanical tests. When these hybrid constructs were grown under oscillatory compression, an increase in matrix synthesis and expression of genes for matrix proteins was observed. Finite element analysis of the system suggested that fluid pressurization may play an important role in regulating matrix synthesis in the repair environment.; This work demonstrates the importance of the mechanical and biochemical environment in modulating and directing the growth of tissue engineered cartilage. Application of proper stimuli to the treated joint could enhance the repair process and increase the chances of fully restoring joint functionality.
机译:关节软骨在铰接关节的相对表面排成一列,从而提供了耐用,低摩擦的支撑表面。由于其低细胞性和缺乏脉管系统,对软骨的伤害常常无法治愈,从而导致慢性疼痛和虚弱。对于晚期骨关节炎的当前治疗选择是有限的,并且通常几乎不能防止关节的进一步退化。使用组织工程学原理,有可能发展出可以植入关节的生物人工组织,从而有效修复损伤并防止进一步的破坏。本论文包括大量研究组织工程软骨用于关节修复的研究。具体来说,他们研究了机械压缩对组织工程软骨构建体的体外影响,以期获得关于如何利用机械环境增强和指导构建体生长的新见解。在振荡压缩下培养工程软骨,并测量基因表达和基质合成的结果变化。发现机械压缩的效果随支架系统的不同而不同。在某些组织工程环境中,振荡压缩刺激了软骨基因的表达和基质合成。在其他环境中,振荡压缩会抑制基质积累并刺激分解代谢活动。这些研究还研究了体外软骨缺损修复模型的使用,以估计工程组织可能如何响应治疗关节中的生物和生物力学刺激。使用混合培养系统对软骨修复进行建模,该系统由围绕中央缺损的外植关节软骨环带组成。该缺损充满了工程软骨,并使用各种生化和机械测试评估了修复效果。当这些杂合构建体在振荡压缩下生长时,观察到基质合成和基质蛋白基因表达的增加。该系统的有限元分析表明,在修复环境中,流体加压可能在调节基质合成中起重要作用。这项工作证明了机械和生化环境在调节和指导组织工程软骨生长中的重要性。对治疗过的关节施加适当的刺激可以增强修复过程,并增加完全恢复关节功能的机会。

著录项

  • 作者

    Hunter, Christopher John.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号