首页> 外文学位 >Multiple antennas in wireless communications: Array signal processing and channel capacity.
【24h】

Multiple antennas in wireless communications: Array signal processing and channel capacity.

机译:无线通信中的多个天线:阵列信号处理和信道容量。

获取原文
获取原文并翻译 | 示例

摘要

We investigate two aspects of multiple-antenna wireless communication systems in this thesis: (1) deployment of an adaptive beamformer array at the receiver; and (2) space-time coding for arrays at the transmitter and the receiver. In the first part of the thesis, we establish sufficient conditions for the convergence of a popular least mean squares (LMS) algorithm known as the sequential Partial Update LMS Algorithm for adaptive beamforming. Partial update LMS (PU-LMS) algorithms are reduced complexity versions of the full update LMS that update a subset of filter coefficients at each iteration. We introduce a new improved algorithm, called Stochastic PU-LMS, which selects the subsets at random at each iteration. We show that the new algorithm converges for a wider class of signals than the existing PU-LMS algorithms.; The second part of this thesis deals with the multiple-input multiple-output (MIMO) Shannon capacity of multiple antenna wireless communication systems under the average energy constraint on the input signal. Previous work on this problem has concentrated on capacity for Rayleigh fading channels. We investigate the more general case of Rician fading. We derive capacity expressions, optimum transmit signals as well as upper and lower bounds on capacity for three Rician fading models. In the first model the specular component is a dynamic isotropically distributed random process. In this case, the optimum transmit signal structure is the same as that for Rayleigh fading. In the second model the specular component is a static isotropically distributed random process unknown to the transmitter, but known to the receiver. In this case the transmitter has to design the transmit signal to guarantee a certain rate independent of the specular component. Here also, the optimum transmit signal structure, under the constant magnitude constraint, is the same as that for Rayleigh fading. In the third model the specular component is deterministic and known to both the transmitter and the receiver. In this case the optimum transmit signal and capacity both depend on the specular component. We show that for low signal to noise ratio (SNR) the specular component completely determines the signal structure whereas for high SNR the specular component has no effect. We also show that training is not effective at low SNR and give expressions for rate-optimal allocation of training versus communication.
机译:本文研究了多天线无线通信系统的两个方面:(1)在接收机处部署自适应波束形成器阵列; (2)在发射机和接收机处对阵列进行时空编码。在论文的第一部分中,我们为流行的最小均方(LMS)算法的收敛建立了充分的条件,该算法被称为用于自适应波束形成的顺序部分更新LMS算法。部分更新LMS(PU-LMS)算法是完全更新LMS的降低复杂度的版本,该版本在每次迭代时都会更新滤波器系数的子集。我们引入了一种新的改进算法,称为随机PU-LMS,该算法在每次迭代时随机选择子集。我们表明,与现有的PU-LMS算法相比,新算法可收敛于更广泛的信号类别。本文的第二部分讨论在输入信号的平均能量约束下,多天线无线通信系统的多输入多输出(MIMO)香农容量。关于这个问题的先前工作集中在瑞利衰落信道的容量上。我们研究了更常见的Rician衰落情况。我们推导了三种Rician衰落模型的容量表达式,最佳发射信号以及容量上限和下限。在第一个模型中,镜面反射分量是动态各向同性分布的随机过程。在这种情况下,最佳发射信号结构与瑞利衰落的结构相同。在第二个模型中,镜面反射分量是发射器未知但接收器已知的静态各向同性静态分布过程。在这种情况下,发射机必须设计发射信号以确保一定速率,而不受镜面反射分量的影响。同样,在恒定幅度约束下,最佳发射信号结构与瑞利衰落相同。在第三个模型中,镜面反射分量是确定性的,并且对于发射器和接收器而言都是已知的。在这种情况下,最佳发射信号和容量都取决于镜面反射分量。我们表明,对于低信噪比(SNR),镜面反射分量完全决定了信号结构,而对于高SNR,镜面反射分量没有影响。我们还表明,训练在低SNR时无效,并且给出了训练与通信的速率最优分配的表达式。

著录项

  • 作者

    Godavarti, Mahesh.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.; Engineering System Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;系统科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号