首页> 外文学位 >Gallium arsenide backside through chip via hole integration using inductively coupled plasma etching.
【24h】

Gallium arsenide backside through chip via hole integration using inductively coupled plasma etching.

机译:砷化镓背面通过芯片通孔集成,使用电感耦合等离子体蚀刻。

获取原文
获取原文并翻译 | 示例

摘要

GaAs backside via hole etching with Cl2 based chemistry and subsequent process integration was studied using Inductively Coupled Plasma (ICP) etching system. Etching characteristic was examined by varying four majors process parameters such as pressure, gas composition, bias RF power and source RF power. Enhanced etching rate compared to Reactive Ion Etching was observed at pressure range less than 14 mT and it is attributed to the higher ion density in the ICP chamber. The amount of reactive Cl neutrals and ions is the controlling factor for the etching mechanism. Etching rate does not depend on the ion bombarding energy, suggesting that by-product desorption may not be the rate limiting step of etching process. Vertical sidewall profile was observed and it is attributed to higher density ion and lower process condition. Sidewall morphology was strongly dependent on the Cl2 percentage. More chemically driven etching conditions produce more pitted surface. Surprisingly, vertical grass was observed at the bottom of via hole at certain process and thinning condition. Grass formation was found to strongly depend on the surface condition affected by the thinning process. Defects induced during thinning process would introduce grass and enough chemical polishing after mechanical thinning would prevent forming grass. At more physically driven etching conditions, grass formation is less favorable. A grass forming model was suggested. An initial grass forming stage, grass may be formed due to selective etching around defect sites. Faster lateral etching around defect sites generated isolated island structures. As etching proceeds, isolated area becomes smaller and incubates tip of grass. During etching, initial grass grows over time and it is attributed to the field effect. When tip of grass reaches a certain critical size, it may produce high field to deflect the arriving ions. Grass grows since etching is less effective at the tip compared to flat base area. After subsequent metallization, DC via hole resistance was evaluated. It is estimated less than 1 ohm, which has negligible effect on the circuit performance.
机译:利用基于Cl 2 的化学方法对GaAs背面通孔进行了刻蚀,并使用电感耦合等离子体(ICP)刻蚀系统研究了后续工艺的集成。通过改变四个主要工艺参数(例如压力,气体成分,偏置RF功率和源RF功率)来检查蚀刻特性。在小于14 mT的压力范围内,与反应离子蚀刻相比,蚀刻速率得到了提高,这归因于ICP室中较高的离子密度。反应性Cl中性离子的数量是蚀刻机理的控制因素。蚀刻速率不取决于离子轰击能量,表明副产物解吸可能不是蚀刻工艺的速率限制步骤。观察到垂直侧壁轮廓,这归因于较高密度的离子和较低的工艺条件。侧壁形态强烈依赖于Cl 2 百分比。更多化学驱动的蚀刻条件会产生更多的凹坑表面。出人意料的是,在某些工艺和细化条件下,在通孔的底部观察到垂直草。发现草的形成很大程度上取决于受间伐过程影响的表面状况。间伐过程中产生的缺陷会引入草皮,而机械间伐后进行足够的化学抛光会阻止草皮的形成。在更多物理驱动的蚀刻条件下,草的形成不太有利。建议使用草皮形成模型。在初始草形成阶段,由于在缺陷部位周围的选择性蚀刻,可以形成草。缺陷部位周围更快的横向蚀刻产生了孤立的岛状结构。随着蚀刻的进行,孤立的区域变小并孵化了草尖。在蚀刻过程中,初始草会随时间而生长,这归因于场效应。当草尖达到某个临界大小时,它可能会产生高电场以偏转到达的离子。草生长是因为与平坦的基部区域相比,尖端的蚀刻效果较差。在随后的金属化之后,评估直流过孔电阻。估计小于1欧姆,这对电路性能的影响可忽略不计。

著录项

  • 作者

    Nam, Peter Sangwoo.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号