首页> 外文学位 >Dynamic models of machining vibrations, designed for classification of tool wear.
【24h】

Dynamic models of machining vibrations, designed for classification of tool wear.

机译:加工振动的动态模型,用于对刀具磨损进行分类。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this dissertation is to develop a machining tool-wear classification system which uses features drawn from accelerometers that respond to machining vibrations. Specifically, we use features from wide band accelerometer signals in a two stage dynamic classifier estimating the flank wear on end mills cutting notches in either steel or titanium workpieces. We introduce an experimental paradigm which incorporates new evaluation metrics not previously used in tool-wear monitoring.; Our experiments also show that within an individual cutting pass the wear process changes as the cutter moves into and out of “regions of interest” which effect the sensor features used in classification. We select features which are sensitive to the dynamics at these various time scales. We demonstrate a single-rate dynamic classifier which models the dynamics of wear both within an individual cutting pass and also over the cutting life of the tool.; To improve the modeling of the rapidly varying discrete wear events that last several milliseconds, we extend the single-rate dynamic classifier to a multi-rate classifier. We demonstrate that coupling the two classifiers during classification gives better performance than combining the outputs of the separate classifiers in a second stage.; We demonstrate a method of using both labeled and unlabeled data to train model parameters demonstrate feature processing which allows us to generalize to a limited range of cutting conditions including the use of features drawn from accelerometers with different response characteristics.; We present the information from the classifier in several different formats to assist the machinist in making an informed decision. Our system estimates the wear on the primary cutting edge at the end of each cutting pass. In addition to this estimate, we provide a measure of the confidence in the cutter wear having exceeded a predefined level considered to constitute the end of the cutter's useful life. We incorporate the actual cutting behavior seen for the particular cutter in use resulting in a more accurate prediction than is possible with a simple average.; The accuracy of our single-rate classifier is 90% to 97% when classifying the wear on cutters milling steel. Even on the more difficult problem of classification when cutting titanium, our multi-rate classifier achieves accuracy of 94%. (Abstract shortened by UMI.)
机译:本文的目的是要开发一种加工工具磨损分类系统,该系统利用从加速度计中提取的,响应于加工振动的特征。具体来说,我们在两阶段动态分类器中使用宽带加速度计信号的功能,以估算立铣刀在钢或钛工件上切槽时的侧面磨损。我们引入了一种实验范式,其中包含了以前在刀具磨损监测中未使用的新评估指标。我们的实验还表明,在单个切割道次内,磨损过程会随着切割器移入和移出“感兴趣区域”而发生变化,这会影响分类中使用的传感器功能。我们选择在这些不同时标下对动态敏感的特征。我们展示了一种单速率动态分类器,该分类器可以模拟单个切削行程内以及刀具切削寿命内的磨损动态。为了改善持续数毫秒的快速变化的离散磨损事件的建模,我们将单速率动态分类器扩展为多速率分类器。我们证明了在分类过程中耦合两个分类器比在第二阶段结合单独分类器的输出提供了更好的性能。我们演示了一种使用标记数据和未标记数据来训练模型参数的方法,演示了特征处理,这使我们能够推广到有限的切削条件范围,包括使用从具有不同响应特性的加速度计中提取的特征。 ;我们以几种不同的格式显示来自分类器的信息,以帮助机械师做出明智的决定。我们的系统会在每次切削行程结束时估算主切削刃的磨损。除了此估计值外,我们还提供了对刀具磨损的置信度的度量,刀具的磨损已经超过了被认为构成刀具使用寿命的预定水平。我们结合了使用中的特定刀具所看到的实际切削性能,从而比使用简单的平均方法可以得到更准确的预测。在对铣刀铣削钢上的磨损进行分类时,我们的单速率分类器的精度为90%至97%。即使在切割钛时遇到更困难的分类问题时,我们的多速率分类器也可达到94%的精度。 (摘要由UMI缩短。)

著录项

  • 作者

    Fish, Randall Keith.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号