首页> 外文学位 >Piezoceramic hollow fiber active composites.
【24h】

Piezoceramic hollow fiber active composites.

机译:压电陶瓷中空纤维活性复合材料。

获取原文
获取原文并翻译 | 示例

摘要

The field of active composites is rapidly growing, spanning a broad range of applications including vibration, acoustic, shape, and flow control. Unfortunately, current active composites require high activation voltages and are incompatible with conductive matrices. One potential solution to these issues is a composite based on hollow, radially-poled long piezoelectric fibers. The goal of this research was to develop and characterize this hollow fiber design to improve the state of the art of active composites by enabling the use of conductive matrices, lowering voltage requirements, and maintaining a level of performance and reliability suitable for active composite applications.; One main objective of this research was to physically demonstrate the feasibility of fabricating and activating a long hollow piezoelectric fiber. The Microfabrication by Coextrusion method was employed, producing fibers with excellent geometric and material properties. Modeling the hollow fiber revealed that aspect ratio, a design parameter describing wall thickness, strongly impacts the performance and reliability of the active composite. The effect of aspect ratio on performance was modeled and experimentally validated, yielding effective fiber and lamina piezoelectric properties. For a given matrix material, an optimum aspect ratio was identified which produces the highest lamina strain. Aspect ratio also played an important role in composite reliability, demonstrated through transverse fiber strain modeling, embedding stress modeling, and tensile strain-to-failure testing.; In comparing hollow fiber composites to the current state of the art, their reliability closely matched that of solid fibers, exhibiting an optimum failure mechanism and a high level of fiber/matrix adhesion. The maximum strain of hollow fiber composites is slightly lower than solid fiber composites due to the reduced strain associated with the ‘3-1’ versus the ‘3-3’ mode of piezoelectric actuation. However, this level of strain is achieved at voltage reductions as great as 97% when compared to solid fiber composites. Furthermore, the ability to isolate the inner and outer electrodes was demonstrated through a new electrode pattern, allowing the use of conductive matrices. Therefore, the hollow fiber design has the potential to improve the state of the art of active composites, and the field of smart structures in general.
机译:活性复合材料领域正在迅速发展,涵盖了振动,声学,形状和流量控制等广泛的应用领域。不幸的是,当前的活性复合材料需要高活化电压并且与导电基质不相容。解决这些问题的一种可能的解决方案是基于中空的径向极化长压电纤维的复合材料。这项研究的目的是开发和表征这种中空纤维设计,以通过使用导电基质,降低电压要求并保持适用于活性复合材料的性能和可靠性水平来改善活性复合材料的技术水平。 ;这项研究的主要目的是从物理上证明制造和激活长空心压电纤维的可行性。使用通过共挤出法进行的微细加工,生产出具有优异几何和材料性能的纤维。对中空纤维进行建模后发现,长宽比(一种描述壁厚的设计参数)会严重影响活性复合材料的性能和可靠性。对长宽比对性能的影响进行了建模和实验验证,产生了有效的纤维和层状压电特性。对于给定的基质材料,确定了最佳的纵横比,该最佳的纵横比会产生最高的层板应变。长宽比在复合材料可靠性中也起着重要作用,这通过横向纤维应变建模,包埋应力建模以及拉伸应变至破坏测试得以证明。在将中空纤维复合材料与现有技术进行比较时,它们的可靠性与实心纤维的可靠性紧密匹配,表现出最佳的失效机理和高水平的纤维/基体粘合力。中空纤维复合材料的最大应变略低于实心纤维复合材料,这是因为与压电驱动的“ 3-1”模式相对于“ 3-3”模式相比,应变降低了。但是,与固体纤维复合材料相比,在降低电压高达97%的情况下达到了这种应变水平。此外,通过新的电极图案证明了隔离内部和外部电极的能力,从而允许使用导电矩阵。因此,中空纤维设计具有改善活性复合材料的技术水平以及总体上改善智能结构领域的潜力。

著录项

  • 作者

    Cannon, Bryan Joseph.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号