首页> 外文学位 >Molecular mechanisms of gating and selectivity in the potassium channel KCSA.
【24h】

Molecular mechanisms of gating and selectivity in the potassium channel KCSA.

机译:钾通道KCSA中门控和选择性的分子机制。

获取原文
获取原文并翻译 | 示例

摘要

To traverse cell membranes, ions must move from a polarizable milieu and pass through the non-polarizable membrane core, a feat that, if not catalyzed would require significant energy (-20 kcal mol-1). Protein channels in the membrane allow ions to surmount this energy barrier by providing an aqueous path. Full understanding of the physiological function of these channels requires understanding of their basic biophysical properties. This dissertation seeks to elucidate mechanisms of opening and closing (i.e., "gating") and selective ion permeation in K+ channels.;The bacterial potassium channel KcsA is gated by intracellular protons. Despite prior attempts to determine the mechanism responsible for pH-gating, the proton sensor has remained elusive. We have constructed a pH insensitive KcsA channel mutant by replacing key ionizable residues from the N- and C-termini with residues mimicking their protonated counterparts with respect to charge. We propose that these residues play crucial roles in proton gating. At neutral pH they form a complex network of inter- and intra-subunit salt bridges and hydrogen bonds near the bundle crossing, stabilizing the closed state. In our model, these residues change their ionization state at acidic pH, disrupting this network, modifying the electrostatic landscape near the channel gate, and favoring channel opening.;Potassium channels allow K+ ions to diffuse through their pores while preventing Na+ ions from permeating. This selection process occurs at the narrow selectivity filter containing structurally identified K+ binding-sites. Selectivity is thought to arise because smaller ions such as Na+ do not bind to K+ sites in a thermodynamically favorable way. We examined how intracellular Na + and Li+ interact with the pore and the permeant ions using electrophysiology, molecular dynamics simulations, and X-ray crystallography. Our results suggest that these small cations have at least one binding site within the K+ selectivity filter, albeit a different one than the K+ sites. We propose that selective permeation from the intracellular side is achieved mainly by a large energy barrier blocking filter entry for Na+ and Li+ in the presence of K +.
机译:要遍历细胞膜,离子必须从可极化的环境中移动并穿过不可极化的膜核心,这一壮举如果不被催化将需要大量能量(-20 kcal mol-1)。膜中的蛋白质通道允许离子通过提供水通道来克服该能垒。充分了解这些通道的生理功能需要了解它们的基本生物物理特性。本文试图阐明K +通道中打开和关闭(即“门控”)和选择性离子渗透的机制。细菌钾通道KcsA被细胞内质子门控。尽管先前已经尝试确定负责pH门控的机制,但是质子传感器仍然难以捉摸。我们通过用模仿其质子化对应物的电荷取代N和C端的关键可电离残基,构建了pH不敏感的KcsA通道突变体。我们建议这些残留物在质子门控中起关键作用。在中性pH值下,它们在束交叉附近形成亚基间和亚基内盐桥和氢键的复杂网络,从而稳定了封闭状态。在我们的模型中,这些残基在酸性pH值下会改变其电离状态,从而破坏该网络,改变通道栅附近的静电景观,并有利于通道打开。该选择过程发生在包含结构确定的K +结合位点的狭窄选择性滤光片上。认为之所以产生选择性是因为较小的离子(例如Na +)不会以热力学上有利的方式与K +位结合。我们使用电生理学,分子动力学模拟和X射线晶体学研究了细胞内Na +和Li +如何与孔和渗透离子相互作用。我们的结果表明,这些小阳离子在K +选择性过滤器中至少具有一个结合位点,尽管与K +结合位点不同。我们建议从细胞内侧的选择性渗透主要是通过在K +存在下,较大的能垒来阻止Na +和Li +的过滤器进入来实现的。

著录项

  • 作者

    Thompson, Ameer Naphtali.;

  • 作者单位

    Weill Medical College of Cornell University.;

  • 授予单位 Weill Medical College of Cornell University.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号