首页> 外文学位 >Geometric control and motion planning for three-dimensional bipedal locomotion .
【24h】

Geometric control and motion planning for three-dimensional bipedal locomotion .

机译:三维双足运动的几何控制和运动规划。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a hierarchical geometric control approach for fast and energetically efficient bipedal dynamic walking in three-dimensional (3-D) space to enable motion planning applications that have previously been limited to inefficient quasi-static walkers. In order to produce exponentially stable hybrid limit cycles, we exploit system energetics, symmetry, and passivity through the energy-shaping method of controlled geometric reduction . This decouples a subsystem corresponding to a lower-dimensional robot through a passivity-based feedback transformation of the system Lagrangian into a special form of controlled Lagrangian with broken symmetry, which corresponds to an equivalent closed-loop Hamiltonian system with upper-triangular form. The first control term reduces to mechanically-realizable passive feedback that establishes a functional momentum conservation law that controls the "divided" cyclic variables to set-points or periodic orbits. We then prove extensive symmetries in the class of open kinematic chains to present the multistage application of controlled reduction. A reduction-based control law is derived to construct straightahead and turning gaits for a 4-DOF and 5-DOF hipped biped in 3-D space, based on the existence of stable hybrid limit cycles in the sagittal plane-of-motion. Given such a set of asymptotically stable gait primitives, a dynamic walker can be controlled as a discrete-time switched system that sequentially composes gait primitives from step to step. We derive "funneling" rules by which a walking path that is a sequence of these gaits may be stably followed by the robot. The primitive set generates a tree exploring the action space for feasible walking paths, where each primitive corresponds to walking along a nominal arc of constant curvature. Therefore, dynamically stable motion planning for dynamic walkers reduces to a discrete search problem, which we demonstrate for 3-D compass-gait bipeds. After reflecting on several connections to human biomechanics, we propose extensions of this energy-shaping control paradigm to robot-assisted locomotor rehabilitation. This work aims to offer a systematic design methodology for assistive control strategies that are amenable to sequential composition for novel progressive training therapies.
机译:本文提出了一种分层几何控制方法,用于在三维(3-D)空间中实现快速高效的双足动态步行,以实现以前仅限于效率低的准静态步行器的运动规划应用。为了产生指数稳定的混合极限环,我们通过控制几何约简的能量整形方法利用系统的能量,对称性和无源性。这通过将系统拉格朗日的基于无源性的反馈变换转换为具有破碎对称性的受控拉格朗日的特殊形式来解耦与低维机器人相对应的子系统,该特殊形式的对称拉格朗日对应于等效的具有上三角形式的闭环哈密顿系统。第一个控制项简化为机械可实现的被动反馈,该被动反馈建立了一个功能动量守恒定律,该定律将“划分的”循环变量控制为设定点或周期性轨道。然后,我们在运动学开放链中证明了广泛的对称性,以提出受控还原的多阶段应用。基于矢状运动平面中稳定的混合极限环的存在,导出了基于折减的控制法则来构造在3-D空间中Biped的4-DOF和5-DOF双动的直线运动和转向步态。给定这样一组渐近稳定的步态图元,可以将动态步行器作为离散时间切换系统进行控制,该系统可以逐步组成步态图元。我们得出“漏斗”规则,机器人可以通过这些规则稳定地遵循作为这些步态序列的步行路径。图元集生成一棵树,探索可行的行走路径的动作空间,其中每个图元对应于沿着恒定曲率的标称弧线行走。因此,动态助行器的动态稳定运动计划减少了离散搜索问题,我们针对3-D指南针步态两足动物演示了这一问题。在考虑了与人类生物力学的几种联系之后,我们提出将这种能量整形控制范例扩展到机器人辅助的运动康复。这项工作旨在为辅助控制策略提供一种系统的设计方法,该方法应适合于新型渐进训练疗法的顺序组成。

著录项

  • 作者

    Gregg, Robert De Moss, IV.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.;Engineering Robotics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号