首页> 外文学位 >Exploring structure-function of the KDPG aldolase with site-directed mutagenesis and directed evolution.
【24h】

Exploring structure-function of the KDPG aldolase with site-directed mutagenesis and directed evolution.

机译:用定点诱变和定向进化探索KDPG醛缩酶的结构功能。

获取原文
获取原文并翻译 | 示例

摘要

This thesis covers the efforts to expand the synthetic potential of the Eschericia coli 2-keto-3-deoxy-6-phosphogluconate aldolase (E.C. 4.1.2.14). The effort focused on the understanding of amino acid structure relationships as they relate to specific activity and in modifying the substrate specificity of the aldolase to include hydrophobic electrophiles, i.e. benzaldehyde. The inclusion of benzaldehyde as a substrate would facilitate the enantioselective synthesis of thiamphenicol and fluorphenicol, two broad spectrum antibiotics. This change in substrate specificity was accomplished with a combination of directed evolution and site-directed mutagenesis.; Residues 131 to 168 were explored with directed evolution and three mutants were identified: P160P, T161K, N168S. P160P is a silent mutation that provides better codon usage. In order to understand the significance of the two other mutants, the crystal structure of the E. coli aldolase was solved. The N168S mutation is located outside the active site and was not further studied. The T161K mutation creates a new lysine within the active site and was theorized to form a new catalytic lysine. To test this theory, a K133Q mutant was prepare to remove the original catalytic lysine. The K133Q mutation had no catalytic activity. Preparation of the T161K/K133Q mutant recovered the aldolase activity. Kinetic studies and pyruvate labeling experiments showed that the T161K mutation was acting as a new catalytic lysine.; The repositioning of the catalytic lysine with the T161K/K133Q mutant aldolase comes at the expense of catalyic activity. The T161K/K133Q mutant showed a drop in kcat of 1000-fold for both KDPG and 2-pyridine carboxaldehyde, compared to wild-type aldolase. However, the T161K/K133Q mutant did show a shift in substrate specificity to include benzaldehyde.; With the success of the T161K/K133Q mutant, V20K/K133Q and G182K/K133Q mutant aldolases were prepared to position the catalytic lysine around the active site. The V20K/K133Q and G182K/K133Q showed similar 1000-fold drops in kinetic rates compared to wild-type. However, these two moved lysine mutants showed broader substrate specificities than either the T161K/K133Q mutant aldolase or wild-type aldolase.; In order to probe various mechanistic postulates, several conserved residues within the active site were also mutated to monitor effects on substrate specificities and kinetic rates. R49Q, T73A, F135I, and E45N mutants were prepared, and all show broader substrate specificities compared to wild-type aldolase, with the exception of R49Q. However, all of these mutants do accept benzaldehyde as an electrophile. The R49Q and T73A mutants have the highest reaction rates with only a 10-fold drop in kcat for 2-pyridine carboxaldehyde compared to wild-type aldolase. The F135I and E45N mutants have a 100-fold and 1000-fold decrease in kcat respectively for 2-pyridine carboxaldehyde compared to wild-type aldolase. Overall, the combination of site-directed mutagenesis and directed evolution was successfully modified the substrate specificity of the KDPG aldolase.
机译:本论文涵盖了扩大大肠杆菌2-酮-3-脱氧-6-磷酸葡萄糖醛酸醛缩酶的合成潜力的努力(E.C. 4.1.2.14)。努力集中于对氨基酸结构关系的理解,因为它们与比活性有关,并致力于改变醛缩酶的底物特异性以包括疏水性亲电试剂,即苯甲醛。包含苯甲醛作为底物将促进对苯二酚和氟苯酚这两种广谱抗生素的对映选择性合成。底物特异性的这种改变是通过定向进化和定点诱变的组合来完成的。用定向进化探索了131至168位残基,并鉴定了三个突变体:P160P,T161K,N168S。 P160P是一个沉默突变,可提供更好的密码子使用率。为了理解其他两个突变体的重要性,解决了大肠杆菌醛缩酶的晶体结构。 N168S突变位于活性位点之外,没有进一步研究。 T161K突变在活性位点产生一个新的赖氨酸,并被理论化为一个新的催化赖氨酸。为了验证这一理论,准备了一个K133Q突变体以去除原始的催化赖氨酸。 K133Q突变没有催化活性。 T161K / K133Q突变体的制备恢复了醛缩酶活性。动力学研究和丙酮酸标记实验表明,T161K突变是一种新的催化赖氨酸。用T161K / K133Q突变体醛缩酶重新定位催化赖氨酸会损害催化活性。与野生型醛缩酶相比,T161K / K133Q突变体的KDPG和2-吡啶吡啶甲醛的kcat降低了1000倍。然而,T161K / K133Q突变体的底物特异性确实发生了变化,包括苯甲醛。随着T161K / K133Q突变体的成功应用,制备了V20K / K133Q和G182K / K133Q突变体醛缩酶,以将催化赖氨酸定位在活性位点附近。与野生型相比,V20K / K133Q和G182K / K133Q的动力学速率下降了1000倍。然而,这两个移动的赖氨酸突变体显示出比T161K / K133Q突变体醛缩酶或野生型醛缩酶更宽的底物特异性。为了探查各种机械假设,还对活性位点内的几个保守残基进行了突变,以监测对底物特异性和动力学速率的影响。制备了R49Q,T73A,F135I和E45N突变体,除R49Q以外,与野生型醛缩酶相比,它们均显示了更广泛的底物特异性。然而,所有这些突变体均接受苯甲醛作为亲电子试剂。与野生型醛缩酶相比,R49Q和T73A突变体具有最高的反应速率,2-吡啶甲醛的kcat下降仅10倍。与野生型醛缩酶相比,对于2吡啶甲醛,F135I和E45N突变体的kcat分别降低100倍和1000倍。总的来说,定点诱变和定向进化的结合成功地修饰了KDPG醛缩酶的底物特异性。

著录项

  • 作者

    Wymer, Nathan John.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Biology Microbiology.; Chemistry Biochemistry.; Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;生物化学;有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号