首页> 外文学位 >The epitaxial growth of gallium nitride and aluminum gallium nitride/gallium nitride heterostructure field effect transistors (HFET) on lithium gallate substrates .
【24h】

The epitaxial growth of gallium nitride and aluminum gallium nitride/gallium nitride heterostructure field effect transistors (HFET) on lithium gallate substrates .

机译:镓酸锂衬底上氮化镓和氮化铝镓/氮化镓异质场效应晶体管(HFET)的外延生长。

获取原文
获取原文并翻译 | 示例

摘要

In this work, an alternative approach for III-Nitride growth using lithium gallate (LiGaO2) as a substrate, is examined. The growth of GaN and AlGaN/GaN HFET structure were developed with molecular beam epitaxy. Lithium gallate has the average in-plane (001) lattice mismatch to GaN of 0.9%. Critical steps for optimal growth are preparation of LGO substrate, nitridation and buffer growth, and III-V flux ratio. Growth of a GaN nucleation buffer layer of proper thickness under N-rich conditions after nitridation is necessary to achieve low background electron concentration in GaN active layer. For Si-doped GaN samples, highest mobility achieved was 526 cm2/Vs with an electron concentration of 7.5 × 1016 cm −3. A dislocation density of 6–7 × 108 cm−2 or lower is determined from mobility modeling. The anisotropic thermal expansion of LGO resulted in the asymmetric residual strain observed in 0.8 μm thick GaN on LGO. The electron mobility in an AlGaN/GaN HFET was measured to be 1365 cm2/Vs at 300 K with the sheet electron concentration of 7.7 × 1012 cm−2 , which is comparable to the average state of the art values. Thus, this first extensive study of GaN device structures on LGO shows the promise of this substrate for advanced device applications.
机译:在这项工作中,研究了使用没食子酸锂(LiGaO 2 )作为底物的III-氮化物生长的另一种方法。利用分子束外延技术发展了GaN和AlGaN / GaN HFET结构的生长。没食子酸锂与GaN的平均面内(001)晶格失配为0.9%。最佳生长的关键步骤是制备LGO底物,氮化和缓冲液生长以及III-V通量比。氮化后在富氮条件下生长适当厚度的GaN成核缓冲层是实现GaN有源层中低背景电子浓度所必需的。对于掺Si的GaN样品,获得的最高迁移率是526 cm 2 / Vs,电子浓度为7.5×10 16 cm -3 。通过迁移率模型确定位错密度为6–7×10 8 cm −2 或更低。 LGO的各向异性热膨胀导致在LGO上的0.8μm厚GaN中观察到不对称残余应变。在300 K下测得的AlGaN / GaN HFET中的电子迁移率为1365 cm 2 / Vs,薄层电子浓度为7.7×10 12 cm - 2 ,与平均最新技术水平相当。因此,对LGO上的GaN器件结构的首次广泛研究表明,该衬底有望用于高级器件应用。

著录项

  • 作者

    Kang, Sangbeom.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号