首页> 外文学位 >Feedback stabilization of the rolling sphere: An intractable nonholonomic system.
【24h】

Feedback stabilization of the rolling sphere: An intractable nonholonomic system.

机译:滚动球的反馈稳定:棘手的非完整系统。

获取原文
获取原文并翻译 | 示例

摘要

A spherical rolling robot has several advantages over wheeled robots, such as enhanced mobility, orientational stability, compact and closed design, and capability of operations in hazardous environments. However, advances in the design and application of spherical mobile robots have been hindered due to complexity of their control problems. Of particular interest is the problem of feedback stabilization of a rolling sphere to an equilibrium configuration. The rolling sphere belongs to the class of nonholonomic systems which has been a popular area of research in the control systems community over the last decade. Although nonholonomic systems are usually controllable, they are not stabilizable to an equilibrium point using smooth static state feedback. This problem has been circumvented by development of techniques such as time-varying stabilization, discontinuous time-invariant stabilization, and hybrid stabilization. Nonetheless, the stabilization of a rolling sphere has remained an unsolved problem since its kinematic model cannot be reduced to the chained form; this renders all established nonholonomic motion planning and control algorithms inapplicable.; In this dissertation we present a feedback control law for stabilization of a rolling sphere to an equilibrium configuration. This control law, which to the best of our knowledge, is the first solution to the problem, stabilizes the sphere about an equilibrium point defined by the two Cartesian coordinates and three orientation coordinates of the sphere. In our formulation, the control inputs are two mutually perpendicular angular speeds in the moving reference frame of the sphere. These control actions individually cause the sphere to move in straight line and circular arc segments. Using an alternating sequence of these rudimentary maneuvers we achieve stabilization of the equilibrium configuration. We first develop an algorithm for partial reconfiguration of the sphere where evolution of one of the orientation coordinates is ignored. This algorithm, which we denote by the Sweep-Tuck algorithm, allows multiple solution trajectories of the sphere. We utilize this flexibility in achieving complete reconfiguration. In our discussion we first show the convergence of the configuration variables to the equilibrium under the proposed feedback law. Subsequently, we prove that the control algorithm stabilizes the equilibrium configuration of the sphere. Simulation results are presented to demonstrate the efficacy of the control strategy.
机译:球形滚动机器人与轮式机器人相比具有多个优点,例如增强的移动性,方向稳定性,紧凑和封闭的设计以及在危险环境中的操作能力。然而,由于球形控制机器人的控制问题的复杂性,阻碍了其设计和应用的发展。特别感兴趣的是将滚动球的反馈稳定到平衡构型的问题。滚动领域属于非完整系统类,在过去的十年中,它一直是控制系统界的一个热门研究领域。尽管非完整系统通常是可控的,但使用平稳的静态反馈无法将它们稳定到平衡点。通过诸如时变稳定,不连续的时不变稳定和混合稳定之类的技术的发展已经避免了这个问题。但是,由于无法将运动学模型简化为链式形式,因此滚动球的稳定化仍然是一个尚未解决的问题。这使得所有已建立的非完整运动计划和控制算法均不适用。在本文中,我们提出了一种将滚动球稳定到平衡状态的反馈控制律。就我们所知,此控制定律是该问题的第一个解决方案,它使球体稳定在由球的两个笛卡尔坐标和三个方向坐标定义的平衡点附近。在我们的公式中,控制输入是球的移动参考系中两个相互垂直的角速度。这些控制动作分别导致球体沿直线段和圆弧段运动。使用这些基本操作的交替序列,我们实现了平衡构型的稳定。我们首先开发了一种用于球的部分重新配置的算法,其中方向坐标之一的演变被忽略了。我们用Sweep-Tuck算法表示的该算法允许球体的多个解轨迹。我们利用这种灵活性来实现完整的重新配置。在我们的讨论中,我们首先显示在建议的反馈定律下配置变量向平衡点的收敛。随后,我们证明了该控制算法可稳定球体的平衡构型。仿真结果表明了控制策略的有效性。

著录项

  • 作者

    Das, Tuhin Kumar.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号