首页> 外文学位 >Relations among hydrology, soils, and vegetation in riparian meadows: Influence on organic matter distribution and storage.
【24h】

Relations among hydrology, soils, and vegetation in riparian meadows: Influence on organic matter distribution and storage.

机译:河岸草甸水文,土壤和植被之间的关系:对有机质分布和存储的影响。

获取原文
获取原文并翻译 | 示例

摘要

Organic matter dynamics in riparian ecosystems are largely driven by interactions among hydrology, soil, and vegetation. In two riparian meadows, northeast Oregon, I examined the hypothesis that vegetation and soil characteristics in three plant communities—defined as wet, moist, and dry meadow—were strongly influenced by hydrological and redox variables associated with the geomorphological position of each community on the floodplain. Along short transects that extended from stream-side wet communities to terrace dry communities, I sampled plant species composition, biomass, and soil; calculated carbon and nitrogen pools; and monitored water table elevation, soil redox potential, and dissolved organic carbon (DOC) and nitrate-nitrogen (nitrate-N) in shallow ground water.; Strong gradients in water table elevation and soil redox potential existed along the transects. Water table elevation followed seasonal patterns of stream stage, and was consistently highest in wet communities, intermediate in moist communities, and lowest in dry communities. Soil redox potential indicated seasonal anaerobic conditions (≤300 mV) in the wet and moist communities, and year-round aerobic conditions in the dry communities. Plant communities differed markedly in species richness (dry > moist > wet), total biomass (wet > moist > dry), and ratios of belowground-to-aboveground biomass (wet > moist > dry). Soil carbon and nitrogen pools were highest in dry communities and similar in wet and moist communities. Vegetation and soil characteristics were strongly correlated to median water table elevation and redox potential. Ecosystem (biomass + soil) carbon ranged from 7.01 to 11.7 kg/m2, with ≈2 to 4% in aboveground biomass, ≈2 to 23% in belowground biomass, and ≈81 to 95% in soil. Ecosystem nitrogen ranged from 0.035 to 0.093 kg/m 2, with ≈0.7 to 1.6% in aboveground biomass, ≈1.5 to 6% in belowground biomass, and ≈94 to 98% in soil. In shallow ground water, concentrations of DOC and nitrate-N were two to six times greater than in stream water, with highest values in wet communities. Collectively, these results indicate that, in unconstrained reaches, water table elevation and soil redox potential strongly influence distribution of plant species, and dynamics and storage of organic matter.
机译:河岸生态系统中的有机物动力学很大程度上受水文,土壤和植被之间相互作用的驱动。在俄勒冈州东北部的两个河岸草甸中,我检验了以下假设:三个植物群落(定义为湿,湿和干草甸)的植被和土壤特征受到与每个群落地貌位置相关的水文和氧化还原变量的强烈影响。洪泛区。沿着从河岸湿地社区到梯田干燥社区的短样带,我对植物物种组成,生物量和土壤进行了采样。计算的碳和氮库;并监测地下水位高度,土壤氧化还原势以及浅层地下水中的溶解有机碳(DOC)和硝酸盐氮(硝酸盐-N)。沿样带存在地下水位高和土壤氧化还原势的强梯度。地下水位升高遵循溪流阶段的季节性模式,在湿润社区中始终最高,在湿润社区中处于中间,而在干旱社区中最低。土壤氧化还原势表明在潮湿和潮湿的社区中有季节性的厌氧条件(≤300mV),而在干燥社区则有全年的有氧条件。植物群落在物种丰富度(干>湿>湿),总生物量(湿>湿>干)和地下生物量与地上生物量的比率(湿>湿>干)上有显着差异。土壤碳和氮库在干旱社区最高,在湿润和潮湿社区相似。植被和土壤特征与地下水位中位数和氧化还原电位密切相关。生态系统(生物质+土壤)的碳含量范围为7.01至11.7 kg / m 2 ,其中地上生物量为≈ 2-4%,地下生物量为≈ 2-23%,≈ 81至土壤中95%。生态系统的氮含量为0.035至0.093 kg / m 2 ,其中地上生物量为≈ 0.7至1.6%,地下生物量为≈ 1.5至6%,土壤中为94至98%。在浅层地下水中,DOC和硝酸盐-N的浓度是河水中的2至6倍,而在湿地中最高。总体而言,这些结果表明,在不受限制的河段,地下水位升高和土壤氧化还原势强烈影响植物物种的分布以及有机物的动力学和存储。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号