首页> 外文学位 >Surface Reactivity of Copper Precursors for Atomic Layer Deposition (ALD) on Metal Surfaces.
【24h】

Surface Reactivity of Copper Precursors for Atomic Layer Deposition (ALD) on Metal Surfaces.

机译:铜前体在金属表面上用于原子层沉积(ALD)的表面反应性。

获取原文
获取原文并翻译 | 示例

摘要

Acetamidinate precursors have shown great promise for atomic layer deposition (ALD) applications, but potentially deposit impurities that may degrade the quality of the films and hinder their practical applications. To help solve this problem, the uptake, the surface chemistry, and the effect of hydrogen coadsorption of copper(I)(N,N'-di-sec-butylacetamidinate) and N,N'-di-sec-butylacetamidine on different metals were characterized under ultrahigh vacuum (UHV) conditions by using a combination of X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS), and temperature programmed desorption (TPD). The main objective of this research project has been to develop a better molecular-level understanding of the chemical reactions associated with ALD of copper metal films, to design and optimize the film deposition processes to be used in the microelectronics industry.;In our initial studies on a Ni (110) single crystal, a temperature window between approximately 350 and 450 K was identified for the ALD of Cu using the Cu acetamidinate precursor: lower temperatures are insufficient for activation of the dissociative adsorption, and higher temperatures lead to continuous decomposition beyond Cu monolayer saturation. Approximately three dosing cycles are required to reach full Cu monolayer saturation, the equivalent of a film growth rate of ∼0.75 A/cycle in ALD. Preadsorption of hydrogen on the surface does not modify any of this behavior because of its rapid desorption at temperatures below 350 K once the gas-phase H 2 is removed. The surface chemistry of the Cu precursor is complex, leading to the desorption of not only hydrogen but also 2-butene and small amidine (N-sec-butylacetamidine, sBut--NH--C(CH 3)=NH); it seems that the amidine ligands decompose via beta-hydride elimination from one of their terminal sec-butyl moieties. The ligands of the copper acetamidinate precursors further decompose on Ni (110) surfaces at higher temperature, leading to the desorption of more hydrogen and leaving some carbon and nitrogen on the surface. The free hydrogenated amidine ligand is less reactive, and no N-sec-butylacetamidine is produced by its thermal activation, but the remaining chemistry follows similar temperature transitions. Similar results were also observed on a Cu (110) surface.;Other copper precursors, Cu(acac)2 (copper(II) acetylacetonate) and Cu-KI5 (copper(I) (N(1(dimethylvinylsiloxy)-1- methylethano)-2-imino-4-pentanoate)) in particular, were tested as well. Details of the results from this work are discussed.
机译:eta酰胺前体在原子层沉积(ALD)应用中已显示出广阔的前景,但潜在地沉积杂质可能会降低膜的质量并阻碍其实际应用。为了帮助解决此问题,铜(I)(N,N'-二仲丁基乙ami酸盐)和N,N'-二仲丁基乙am的吸收,表面化学性质以及氢共吸附对不同金属的影响通过结合使用X射线光电子能谱(XPS),低能离子散射(LEIS)和程序升温脱附(TPD),在超高真空(UHV)条件下对样品进行了表征。该研究项目的主要目的是,对铜金属薄膜的原子层沉积相关的化学反应形成更好的分子水平的理解,设计和优化用于微电子行业的薄膜沉积工艺。在Ni(110)单晶上,使用乙酰胺化铜前体确定了ALD的ALD温度在约350至450 K之间:较低的温度不足以激活解离吸附,较高的温度导致连续分解超过铜单层饱和。大约需要三个加液周期才能达到完全的Cu单层饱和,相当于ALD中约0.75 A /周期的薄膜生长速率。氢在表面上的预吸附不会改变任何这种行为,因为一旦除去气相H 2,氢就会在低于350 K的温度下迅速解吸。铜前体的表面化学非常复杂,不仅导致氢的脱附,还导致2-丁烯和小am的脱附(N-仲丁基乙acet,sBut--NH--C(CH 3)= NH);似乎the配体通过β-氢化物消除从其末端仲丁基部分之一分解。乙酰胺铜前体的配体在较高温度下进一步在Ni(110)表面上分解,导致更多的氢解吸,并在表面上留下一些碳和氮。游离的氢化am配体的反应性较低,并且通过其热活化不产生N-仲丁基乙acet,但其余化学反应遵循相似的温度转变。在Cu(110)表面上也观察到了类似的结果。;其他铜前体Cu(acac)2(乙酰丙酮铜(II))和Cu-KI5(Cu(I)(N(1(二甲基乙烯基甲硅烷氧基)-1-甲基乙醇) )尤其是)-2-亚氨基-4-戊酸酯))也进行了测试。讨论了这项工作的结果的细节。

著录项

  • 作者

    Ma, Qiang.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号