首页> 外文会议>AIChE annual meeting >Controlling Fine Metal Particle Surface Reactivity with Atomic Layer Deposition (ALD)
【24h】

Controlling Fine Metal Particle Surface Reactivity with Atomic Layer Deposition (ALD)

机译:通过原子层沉积(ALD)控制细金属颗粒表面反应性

获取原文

摘要

Very fine (~5 μm) iron (Fe) particles are coated with an ultrathin, conformal, pinholefree alumina nanolayer on the order of 1-10 nm using atomic layer deposition (ALD) in a fluidized bed reactor. While fluidizing, the individual primary particles form aggregates that are approximately 96 μm based upon laser imaging. Minimum fluidization velocity is calculated with additional forces of cohesion, vibration, and vacuum added. The primary particles are found to have a very thin (~3-5 nm) layer of native oxide, most likely α-Fe2O3 or hematite. The hematite and alumina coating require different considerations for minimum fluidization calculations due to their surface characteristics. After the coating process, the particle size distributions and surface areas do not change, indicating that the coatings do not bind the aggregates together. All individual primary particles are coated, regardless of aggregation during fluidization, due to the nature of the ALD process. Uncoated particles begin to oxidize in air at 473 K. Once the coating is thicker than 25 ?, the particles will not oxidize in air at temperatures up to 723 K. Oxidation temperature is even higher for thicker coatings.
机译:使用原子层沉积(ALD)在流化床反应器中,将非常细的(〜5μm)铁(Fe)颗粒涂上一层超薄的,保形的,无针孔的氧化铝纳米层,厚度约为1-10 nm。在流化时,基于激光成像,单个初级粒子形成的聚集体约为96μm。通过增加内聚力,振动和真空的附加力来计算最小流化速度。发现初级粒子具有非常薄的(约3-5 nm)天然氧化物层,很可能是α-Fe2O3或赤铁矿。赤铁矿和氧化铝涂层由于其表面特性而需要不同的考虑因素,以进行最小化流化计算。在包衣过程之后,粒度分布和表面积没有改变,表明包衣没有将聚集体粘合在一起。由于ALD工艺的性质,所有单个初级颗粒均被涂覆,而与流化过程中的聚集无关。未涂层的颗粒在473 K的空气中开始氧化。一旦涂层的厚度超过25 ?,则在高达723 K的温度下,颗粒在空气中将不会氧化。对于较厚的涂层,氧化温度甚至更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号