首页> 外文学位 >Impact of extension lateral doping abruptness on deep submicron device performance.
【24h】

Impact of extension lateral doping abruptness on deep submicron device performance.

机译:延伸横向掺杂突变对深亚微米器件性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

Device scaling is directly responsible for Moore's law and has enabled tremendous improvements in MOS (Metal-Oxide-Semiconductor) device performance. As device dimensions shrink, the channel resistance decreases, which in turn allows faster circuit operation. Microprocessor chips operating at 2GHz or higher clock speeds are now available. However, as the intrinsic device continues to improve, parasitic components such as the series resistance in the source/drain region start to limit device performance. Understanding and controlling these parasitic components, through proper design of the device, are therefore essential.; This thesis starts with a general discussion of the issues facing device design in the deep submicron region. After that, the methodology used in this work as well as the important issue of the appropriate metric for comparing device technologies are examined.; Next, the results of a thorough study of the impact of lateral abruptness and gate-extension overlap are presented. The impact of lateral abruptness on series resistance and threshold roll-off is carefully examined. While the conventional wisdom is “the more abrupt the junction, the better the device”, the benefits of lateral abruptness alone on device performance is shown to be less than one would expect from series resistance arguments. At the same time, the gate-extension overlap length is shown to have a significant effect on device performance, suggesting the employment of an additional spacer for tuning the overlap length would be beneficial for device performance.; This thesis concludes by examining the issues of rigorous and accurate calculation of device resistance components; the software developed for processing and analyzing the simulation results for the current study; and grid sensitivity of MOS device simulations.
机译:器件缩放直接影响着摩尔定律,并极大地提高了MOS(金属氧化物半导体)器件的性能。随着器件尺寸的缩小,沟道电阻减小,这又使电路可以更快地运行。现在提供工作在2GHz或更高时钟速度的微处理器芯片。然而,随着本征器件的不断改进,诸如源/漏区中的串联电阻之类的寄生组件开始限制器件性能。因此,通过适当设计器件来了解和控制这些寄生元件至关重要。本文从对深亚微米区域器件设计所面临问题的一​​般讨论开始。之后,研究了这项工作中使用的方法以及比较设备技术的适当指标的重要问题。接下来,介绍了对横向突变和门-伸展重叠的影响进行彻底研究的结果。仔细检查了横向突变对串联电阻和阈值滚降的影响。尽管传统观点是“结点越陡,器件越好”,但单凭横向突变对器件性能的好处就显示出不及串联电阻论所期望的。同时,栅极延伸部分的重叠长度显示出对器件性能的显着影响,这表明采用额外的垫片来调整重叠长度将对器件性能有利。本文的结论是通过研究对器件电阻分量进行精确而精确的计算得出的。为处理和分析当前研究的仿真结果而开发的软件; MOS器件仿真的栅极灵敏度。

著录项

  • 作者

    Kwong, Yiupun Michael.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号