首页> 外文学位 >TGF-beta and CTGF regulation of extracellular matrix synthesis in tissue fibrosis: Analysis of in vitro and in vivo models.
【24h】

TGF-beta and CTGF regulation of extracellular matrix synthesis in tissue fibrosis: Analysis of in vitro and in vivo models.

机译:TGF-β和CTGF调节组织纤维化中细胞外基质的合成:体内和体外模型分析。

获取原文
获取原文并翻译 | 示例

摘要

Transforming growth factor-beta (TGF-β) and connective tissue growth factor (CTGF) are profibrogenic growth factors associated with the pathogenesis of most fibrotic diseases. The goal of this work was to characterize the common and distinct profibrogenic effects of these growth factors using in vitro and in vivo models of systemic sclerosis (SSc) and renal fibrosis. Both growth factors potently induce extracellular matrix (ECM) synthesis in SSc fibroblasts but via distinct mechanisms. In vitro, TGF-β stimulates matrix synthesis in normal and SSc fibroblasts, whereas CTGF selectively induces ECM expression in SSc fibroblasts only in cooperation with insulin. Furthermore, SSc fibroblasts express increased TGF-βRI levels. This altered TGF-β receptor ratio significantly correlates with unresponsiveness to inhibition of collagen basal levels by blocking TGF-βRII signal transduction and may suggest an alteration in autocrine TGF-β signaling in these cells. In the cell types contributing to pathologic ECM deposition in renal fibrosis, TGF-β and CTGF induce similar profibrotic effects in mesangial cells but have divergent functions in epithelial cells. Only TGF-β stimulates collagen whereas both TGF-β and CTGF induce tenascin-C, an ECM protein associated with epithelial-mesenchymal transdifferentiation (EMT), which is a process implicated in the generation of increased interstitial fibroblasts associated with renal fibrosis. Thus, CTGF's profibrogenic actions may distinctly facilitate EMT with a less pronounced effect on collagen deposition, whereas TGF-β is a known mediator of both EMT and excessive ECM deposition in tubular epithelial cells. TGF-β receptor ratios are also modulated in vivo in the remnant kidney model of renal fibrosis. TGF-βRII levels remain elevated with disease progression, whereas increases in TGF-β and TGF-βRI levels are transient. CTGF levels are induced subsequent to TGF-β, remaining elevated upon the onset of fibrosis with kinetics similar to TGF-βRII. Collectively, our studies suggest that alterations in TGF-β receptor levels may be a common mechanism in tissue fibrosis by which TGF-β upegulates its signaling pathway to achieve its profibrotic functions. In addition, these studies suggest that CTGF is a potent inducer of ECM but likely in the context of other profibrotic signaling pathways, such as TGF-β or insulin/insulin like growth factors (IGFs), and may serve to perpetuate the fibrotic response initiated by TGF-β.
机译:转化生长因子-β(TGF-β)和结缔组织生长因子(CTGF)是与大多数纤维化疾病的发病机理相关的促纤维化生长因子。这项工作的目的是使用系统性硬化症(SSc)和肾纤维化的体外 in vivo 模型表征这些生长因子的共同而独特的促纤维化作用。两种生长因子均通过不同的机制有效诱导SSc成纤维细胞中的细胞外基质(ECM)合成。 体外,TGF-β刺激正常和SSc成纤维细胞的基质合成,而CTGF仅在与胰岛素配合下选择性诱导SSc成纤维细胞中ECM表达。此外,SSc成纤维细胞表达增加的TGF-βRI水平。通过阻断TGF-βRII信号转导,这种改变的TGF-β受体比率与对抑制胶原蛋白基础水平的无反应性显着相关,并且可能暗示这些细胞中自分泌TGF-β信号传导的改变。在有助于肾脏纤维化中病理性ECM沉积的细胞类型中,TGF-β和CTGF在系膜细胞中诱导相似的纤维化作用,但在上皮细胞中具有不同的功能。仅TGF-β刺激胶原蛋白,而TGF-β和CTGF均诱导肌腱蛋白C(一种与上皮-间质转分化(EMT)相关的ECM蛋白),该过程与增加与肾纤维化相关的间质成纤维细胞有关。因此,CTGF的促纤维化作用可能明显促进EMT,但对胶原蛋白沉积的作用不太明显,而TGF-β既是EMT又是肾小管上皮细胞ECM过度沉积的已知介质。在残余的肾纤维化肾模型中,体内的TGF-β受体比率也被调节。随着疾病的进展,TGF-βRII水平保持升高,而TGF-β和TGF-βRI水平升高是短暂的。在TGF-β之后诱导CTGF水平,在纤维化发作后仍保持升高的水平,其动力学类似于TGF-βRII。总体而言,我们的研究表明,TGF-β受体水平的改变可能是组织纤维化的一种常见机制,通过这种机制,TGF-β可以增强其信号传导途径以实现其纤维化功能。此外,这些研究表明,CTGF是ECM的有效诱导剂,但可能在其他纤维化信号传导途径(例如TGF-β或胰岛素/胰岛素样生长因子(IGF))的背景下,并可能有助于维持最初引发的纤维化反应通过TGF-β。

著录项

  • 作者

    Hyer, Elizabeth Gore.;

  • 作者单位

    Medical University of South Carolina.;

  • 授予单位 Medical University of South Carolina.;
  • 学科 Biology Molecular.; Biology Animal Physiology.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号