首页> 外文学位 >Novel processing methods for gallium nitride nanocrystalline powders and thin films.
【24h】

Novel processing methods for gallium nitride nanocrystalline powders and thin films.

机译:氮化镓纳米晶体粉末和薄膜的新型加工方法。

获取原文
获取原文并翻译 | 示例

摘要

Chemical precursors based on oxygen (gallium isopropoxide, GIP) and nitrogen (gallium dimethyl amide, GDA) were used to prepare nanocrystalline gallium nitride (GaN) powders and films by pyrolysis and crystallization in an ammonia atmosphere. Growth of nanocrystalline wurtzite GaN grains embedded within an amorphous matrix occurred by boundary motion at lower temperatures followed by evaporation-condensation at higher temperatures. Low temperature pyrolysis of GIP in an ammonia atmosphere yielded gallium oxynitride nanocrystals with a structure similar to wurtzite GaN, and where grain growth occurs by evaporation-condensation. Higher processing temperatures transformed the nanocrystalline powders to wurtzite GaN possibly by a volatile species, Ga2O that acted as an intermediate towards the formation of GaN. Amorphous GaN films were produced by spin-coating solutions of GDA and GIP on single crystal Al2O 3 substrates and subsequently pyrolyzed and crystallized in ammonia. At low temperatures, epitaxial grains nucleated at the substrate interface and grew through the polycrystalline overlayer at higher temperatures primarily by evaporation-condensation. Films exhibited luminescence at 380nm and a broad peak centered near 530nm usually associated with nitrogen vacancies.; GaN films were produced by a vapor-solid reaction between reactive species of ammonia and the LiGaO2 substrate material at elevated temperatures (700°C–1000°C). Two types of films (A and B) were produced with the formula LixGa(2−x)O2xN2(1−x) , x ≈ 0.35 (A) and x = 0 (B) depending on the flow rate of ammonia over the substrate. It is postulated that an intermediate species (e.g., Ga 2O) was liberated from the LiGaO2 and reacted further with ammonia to form GaN.
机译:使用基于氧气(异丙醇镓,GIP)和氮气(二甲基甲酰胺镓,GDA)的化学前驱物,通过在氨气氛中进行热解和结晶来制备纳米晶氮化镓(GaN)粉末和薄膜。嵌入非晶态基质中的纳米晶纤锌矿型GaN晶粒的生长是在较低温度下通过边界运动发生的,然后在较高温度下发生蒸发冷凝。 GIP在氨气氛中的低温热解产生具有类似于纤锌矿GaN的结构的氧氮化镓纳米晶体,并且其中通过蒸发冷凝发生晶粒生长。较高的加工温度可能通过一种挥发性物质Ga 2 O将纳米晶体粉末转变为纤锌矿型GaN,而后者是形成GaN的中间体。通过在单晶Al 2 O 3 衬底上旋涂GDA和GIP溶液来制备非晶GaN膜,然后在氨中将其热解和结晶。在低温下,外延晶粒在衬底界面处成核,并在更高的温度下主要通过蒸发冷凝而穿过多晶覆盖层生长。薄膜在380nm处显示发光,并在530nm附近出现一个宽峰,通常与氮空位有关。 GaN薄膜是通过氨的反应性物种与LiGaO 2 衬底材料在高温(700°C–1000°C)下的汽固反应生成的。制作了两种类型的薄膜(A和B),其分子式为Li x Ga (2-x) O 2x N 2 (1-x),x≈ 0.35(A)和x = 0(B)取决于氨在基材上的流速。假定从LiGaO 2 中释放出一种中间物质(例如Ga 2 O),并与氨进一步反应形成GaN。

著录项

  • 作者

    Kisailus, David James.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号