首页> 外文学位 >Novel mechanisms for PKC family enzymes to regulate PI3K signaling pathway.
【24h】

Novel mechanisms for PKC family enzymes to regulate PI3K signaling pathway.

机译:PKC家族酶调节PI3K信号通路的新机制。

获取原文
获取原文并翻译 | 示例

摘要

Phosphatidylinositol 3-kinase (PI3K) generates membrane phospholipids that serve as second messengers to recruit signaling proteins to plasma membrane consequently regulating cell growth and survival. PI3K is a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit. Association of the p85 with other signal proteins is critical for induced PI3K activation. Activated PI3K, in turn, leads to signal flows through a variety of PI3K effectors including PDK1, AKT, GSK3, BAD, p70 S6K and NFκB. The PI3K pathway is under regulation by multiple signal proteins representing cross-talk between different signaling cascades. In this study, we have evaluated the role of protein kinase C family kinases on signaling through PI3K at multiple levels. Firstly, we observed that the action of PKC specific inhibitors like Ro-31-8220 and GF109203X was associated with an increased AKT phosphorylation and activity, suggesting that PKC kinases might play a negative role in the regulation of PI3K pathway. Then, we demonstrated the stimulation of AKT by PKC inhibition was dependent on functional PI3K enzyme and able to be transmitted to the AKT effector p70 S6K. Furthermore, we showed an inducible physical association between the PKCζ isotype and AKT, which was accompanied by an attenuated AKT activity. However, a kinase-dead form of PKC failed to affect AKT. In the second part of our research we revealed the ability of a different PKC family member, PKCδ to bind to the p85 subunit of PI3K in response to oxidative stress, a process requiring the activity of src tyrosine kinases. The interaction was demonstrated to be a direct and specific contact between the carboxyl terminal SH2 domain of p85 and tyrosine phosphorylated PKCδ. Several different types of agonists were capable to induce this association including tyrosine kinases and phorbol esters with PKCδ tyrosine phosphorylation being integral components. Finally, the PKCδ-PI3K complex was related to a reduction in the AKT phosphorylation induced by src. A kinase-deficient mutant of PKCδ was equally able to inhibit AKT signal as the wild type, indicative of a process independent of PKCδ catalytic activity. Altogether, our data illustrate different PKC isoforms regulating PI3K pathway at multiple levels, suggesting a mechanism to control signal flows through PI3K for normal cell activities. Although further investigation is required for full understanding of the regulatory mechanism, we propose that complex formation of signal proteins in PI3K pathway and specific PKC isoforms plays important role in their functional linkage.
机译:磷脂酰肌醇3-激酶(PI3K)产生膜磷脂,其充当第二信使,以将信号蛋白募集到质膜,从而调节细胞的生长和存活。 PI3K是由催化p110亚基和调节性p85亚基组成的异二聚体。 p85与其他信号蛋白的缔合对于诱导PI3K激活至关重要。激活的PI3K依次导致信号流过各种PI3K效应器,包括PDK1,AKT,GSK3,BAD,p70 S6K和NFκB。 PI3K途径受多种信号蛋白的调节,这些蛋白代表不同信号级联之间的串扰。在这项研究中,我们评估了蛋白激酶C家族激酶在多个水平上通过PI3K进行信号传递的作用。首先,我们观察到PKC特异性抑制剂(如Ro-31-8220和GF109203X)的作用与增加的AKT磷酸化和活性有关,这表明PKC激酶可能在PI3K途径的调节中起负作用。然后,我们证明了PKC抑制对AKT的刺激依赖于功能性PI3K酶,并且能够传递给AKT效应子p70 S6K。此外,我们显示了PKCζ同种型与AKT之间可诱导的物理缔合,伴随着AKT活性减弱。但是,激酶死亡形式的PKC不能影响AKT。在研究的第二部分中,我们揭示了不同的PKC家族成员PKCδ响应氧化应激而结合PI3K的p85亚基的能力,这一过程需要src酪氨酸激酶的活性。该相互作用被证明是p85的羧基末端SH2结构域与酪氨酸磷酸化的PKCδ之间的直接和特异性接触。几种不同类型的激动剂能够诱导这种缔合,包括酪氨酸激酶和佛波酯,其中PKCδ酪氨酸磷酸化是不可或缺的成分。最后,PKCδ-PI3K复合物与src诱导的AKT磷酸化的减少有关。与野生型一样,PKCδ的激酶缺陷型突变体同样能够抑制AKT信号,表明该过程独立于PKCδ的催化活性。总而言之,我们的数据说明了在多个水平上调节PI3K途径的不同PKC同工型,提示了一种控制信号流过PI3K的机制,以实现正常的细胞活动。尽管需要进一步研究以充分了解调节机制,但我们建议在PI3K途径中信号蛋白和特定PKC亚型的复杂形成在其功能连接中起重要作用。

著录项

  • 作者

    Mao, Muling.;

  • 作者单位

    The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences.;

  • 授予单位 The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences.;
  • 学科 Biology Molecular.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号