首页> 外文学位 >Design and simulation of cellular nonlinear networks using single-electron tunneling transistor technology.
【24h】

Design and simulation of cellular nonlinear networks using single-electron tunneling transistor technology.

机译:使用单电子隧穿晶体管技术的细胞非线性网络的设计和仿真。

获取原文
获取原文并翻译 | 示例

摘要

It is currently predicted that semiconductor device scaling will end at the 22-nm device feature size (7 nm physical channel length) according to the International Technology Roadmap for Semiconductors. The main challenge is then to develop innovative technologies that will extend the scaling beyond roadmap projection. Any new technology must be well matched with complementary metal oxide semiconductor (CMOS) technology and scaleable beyond CMOS scaling projections and must provide low-power high-speed signal processing. Nanotechnology will become an appealing option for developing devices for integrated circuits with dimensions and performances well beyond roadmap predictions. Such devices, based on the controllable transfer of charge between dots or ‘islands’, can take advantage of the quantum mechanical effects, such as tunneling and energy quantization, which would normally occur at the nanometer scale. An outstanding challenge is in arranging such nanodevices in new architectures that can be integrated on a single chip. In particular, locally interconnected architectures are believed to be necessary to alleviate the problems associated with increasing interconnect length and complexity in ultra-dense circuits.; The goal of this work is to investigate the use of nanoelectronic structures in cellular non-linear network (CNN) architectures for potential application in future high-density and low-power CMOS-nanodevice hybrid circuits. The operation of the single-electron tunneling (SET) transistor is first reviewed, followed by a discussion of simple CNN linear architectures using a SET inverter topology as the basis for the non-linear transfer characteristics for individual cells to be used in analog processing arrays for image-processing applications. The basic SET CNN cell acts as a summing node that is capacitively coupled to the inputs and outputs of nearest neighbor cells. Monte Carlo simulation results are used to show CNN-like behavior in attempting to realize different functionality, such as connected component detector, shadowing, and NOT function. The speed and signal delay in SET networks are also discussed, and the power consumption of the SET-CNN is estimated and compared to a state-of-the-art CMOS processor.
机译:当前,根据国际半导体技术路线图,预计半导体器件的缩放将以22 nm的器件特征尺寸(7 nm的物理通道长度)结束。然后,主要的挑战是开发创新技术,将扩展的范围扩展到路线图预测之外。任何新技术都必须与互补金属氧化物半导体(CMOS)技术很好地匹配,并且可扩展至超过CMOS缩放比例的范围,并且必须提供低功耗高速信号处理。纳米技术将成为开发尺寸和性能远远超出路线图预测范围的集成电路器件的有吸引力的选择。这样的设备基于点或“岛”之间可控的电荷转移,可以利用通常在纳米级发生的量子力学效应,例如隧穿和能量量化。一个巨大的挑战是将这种纳米器件布置在可以集成在单个芯片上的新架构中。特别地,认为局部互连的体系结构对于减轻与超密度电路中互连长度的增加和复杂性有关的问题是必要的。这项工作的目的是研究在蜂窝非线性网络(CNN)架构中纳米电子结构的使用,以便在未来的高密度和低功耗CMOS纳米器件混合电路中潜在应用。首先回顾了单电子隧穿(SET)晶体管的操作,然后讨论了使用SET逆变器拓扑结构作为简单模拟CNN线性架构的基础,该拓扑是模拟处理阵列中单个单元的非线性传输特性的基础用于图像处理应用程序。基本SET CNN单元充当求和节点,该求和节点电容耦合至最近邻单元的输入和输出。蒙特卡罗模拟结果用于显示试图实现不同功能(例如连接的分量检测器,阴影和NOT功能)的类CNN行为。还讨论了SET网络中的速度和信号延迟,并估计了SET-CNN的功耗并将其与最新的CMOS处理器进行比较。

著录项

  • 作者

    Gerousis, Costa P.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号