首页> 外文学位 >Computational strategies for nonlinear model predictive control.
【24h】

Computational strategies for nonlinear model predictive control.

机译:非线性模型预测控制的计算策略。

获取原文
获取原文并翻译 | 示例

摘要

The primary purpose of this study is to develop a computationally efficient, numerically robust method for implementing model predictive control in real-time using nonlinear models. In addition to developing the algorithmic framework for the solution of these on-line optimization problems, the key differences between nonlinear and linear dynamic models are delineated in the context of optimization and closed-loop performance. A secondary goal of this research is to develop a freely available software package that incorporates the ideas of this work, as well as several relevant nonlinear models for benchmarking purposes.; The work presented in this thesis advocates a regulator without a terminal constraint, but with a terminal penalty based on the linear quadratic regulator at the target. The regulator is able to stabilize many difficult nonlinear examples.; Moving horizon estimation is used to estimate states from a history of input and output data. This strategy is shown to converge to the true state of the plant even when the current industrial standard, the extended Kalman filter, fails. Further, an approximate smoothing covariance is developed for nonlinear models that removes the periodic behavior of the filtering covariance update.; Both the regulator and state estimator employ specially tailored sequential quadratic programming algorithms to efficiently solve their respective nonlinear programs. The feasibility-perturbed SQP (FP-SQP) algorithm is introduced, which has the property of maintaining feasibility with respect to the state evolution equation and hard constraints at every iteration. The solution of the quadratic programs at each iteration is performed by a structured solver that scales linearly with horizon length, rather than cubically. The presented nonlinear programming method is demonstrated to be faster and more efficient than standard commercial software.; The closed-loop behavior of the nonlinear model predictive control system is investigated using the regulator, the estimator, and a nonlinear target calculation. Insight into the stability of disturbance models is gained, and superior performance to linear control is documented. Further, local minima are demonstrated for both the regulator and estimator. These minima may be avoided by shortening the horizon in the regulator, or by applying constraints in the estimator.
机译:这项研究的主要目的是开发一种计算有效,数值鲁棒的方法,用于使用非线性模型实时实施模型预测控制。除了开发用于解决这些在线优化问题的算法框架外,还在优化和闭环性能的背景下描述了非线性和线性动态模型之间的关键差异。该研究的第二个目标是开发一个免费的软件包,其中包含这项工作的思想,以及一些用于基准测试的相关非线性模型。本文提出的工作提倡一种没有终端约束的调节器,但是在目标上具有基于线性二次调节器的终端惩罚。调节器能够稳定许多困难的非线性实例。动视线估计用于根据输入和输出数据的历史估计状态。即使当前的工业标准(扩展的卡尔曼滤波器)失效,该策略也可以收敛到工厂的真实状态。此外,为非线性模型开发了近似平滑协方差,该协方差消除了滤波协方差更新的周期性行为。调节器和状态估计器均采用专门定制的顺序二次编程算法来有效地求解其各自的非线性程序。引入了可行性扰动SQP(FP-SQP)算法,该算法具有在每次迭代中维持状态演化方程的可行性和硬约束的特性。每次迭代时二次程序的求解都是由结构化求解器执行的,该结构求解器随视域长度线性缩放,而不是三次缩放。证明了所提出的非线性编程方法比标准的商业软件更快,更高效。使用调节器,估计器和非线性目标计算来研究非线性模型预测控制系统的闭环行为。获得对扰动模型稳定性的洞察力,并记录了优于线性控制的性能。此外,对调节器和估计器均显示了局部最小值。可以通过缩短调节器的范围或在估算器中应用约束来避免这些最小值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号