首页> 外文学位 >The Integration of Nearthreshold and Subthreshold CMOS Logic for Energy Minimization.
【24h】

The Integration of Nearthreshold and Subthreshold CMOS Logic for Energy Minimization.

机译:集成近阈值和亚阈值CMOS逻辑,可最大程度地降低能耗。

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth in the use of portable electronic devices, more emphasis has recently been placed on low-energy circuit design. Digital subthreshold complementary metal-oxide-semiconductor (CMOS) circuit design is one area of study that offers significant energy reduction by operating at a supply voltage substantially lower than the threshold voltage of the transistor. However, these energy savings come at a critical cost to performance, restricting its use to severely energy-constrained applications such as microsensor nodes. In an effort to mitigate this performance degradation in low-energy designs, nearthreshold circuit design has been proposed and implemented in digital circuits such as Intel's energy-efficient hardware accelerator.;The application spectrum of nearthreshold and subthreshold design could be broadened by integrating these cells into high-performance designs. This research focuses on the integration of characterized nearthreshold and subthreshold standard cells into high-performance functional modules. Within these functional modules, energy minimization is achieved while satisfying performance constraints by replacing non-critical path logic with nearthreshold and subthreshold logic cells. Specifically, the critical path method is used to bind the timing and energy constraints of the design. The design methodology was verified and tested with several benchmark circuits, including a cryptographic hash function, Skein. An average energy savings of 41.15% was observed at a circuit performance degradation factor of 10. The energy overhead of the level shifters accounted for at least 8.5% of the energy consumption of the optimized circuit, with an average energy overhead of 26.76%. A heuristic approach is developed for estimating the energy savings of the optimized design.
机译:随着便携式电子设备的使用的快速增长,近来更多的重点放在低能耗电路设计上。数字亚阈值互补金属氧化物半导体(CMOS)电路设计是一个研究领域,它通过在实质上低于晶体管阈值电压的电源电压下工作而显着降低了能量。但是,这些节能措施对性能造成了至关重要的代价,从而限制了其在严格耗能的应用程序(例如微传感器节点)中的使用。为了减轻低能耗设计中的这种性能下降,已经提出并在诸如英特尔节能硬件加速器之类的数字电路中实现了近阈值电路设计。通过集成这些单元可以扩大近阈值和亚阈值设计的应用范围。进入高性能设计。这项研究的重点是将特征化的近阈值和亚阈值标准单元集成到高性能功能模块中。在这些功能模块内,通过用近阈值和亚阈值逻辑单元替换非关键路径逻辑,在满足性能约束的同时实现了能量的最小化。具体来说,关键路径方法用于约束设计的时序和能量约束。该设计方法论已通过多个基准电路进行了验证和测试,包括加密哈希函数Skein。在电路性能降级系数为10时,平均节能量为41.15%。电平转换器的能量开销至少占优化电路能耗的8.5%,平均能量开销为26.76%。开发了一种启发式方法来估算优化设计的节能量。

著录项

  • 作者

    Hicks, John Kevin.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Computer.
  • 学位 M.S.
  • 年度 2010
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号