首页> 外文学位 >A non-invasive assesment of moisture content of municipal solid waste in a landfill using resistivity imaging.
【24h】

A non-invasive assesment of moisture content of municipal solid waste in a landfill using resistivity imaging.

机译:使用电阻率成像技术对垃圾填埋场中城市固体废物的水分进行非侵入式评估。

获取原文
获取原文并翻译 | 示例

摘要

A bioreactor landfill is operated to enhance waste decomposition, gas production, and refuse stabilization. The fundamental aspect in the operation of a bioreactor landfill is the controlled addition of water and/or the recirculation of leachate into the landfill's waste mass. Since there is an increasing trend to operate landfills as bioreactor landfills, it is crucial to understand the moisture distribution within the landfill. Monitoring the moisture distribution within a bioreactor landfill is essential not only for the design and operation of leachate recirculation systems, but also to identify sites with non-uniform leachate distribution due to ponding and channeling.;In the recent years, there has been a huge interest in using electrical resistivity imaging (ERI) as a non-destructive tool to monitor the moisture distribution within a bioreactor landfill. ERI can detect variation in moisture content, because along with other factors, resistivity varies with moisture content. ERI can produce detailed profiles of the subsurface, showing the spatial distribution of moisture within the landfill. However, these profiles do not give quantitative information about the moisture content of the waste.;The overall objective of this research is to develop a correlation between electrical resistivity and moisture content of waste, in order to be able to determine in situ moisture content of municipal solid waste (MSW) without any direct sampling and laboratory testing. Since electrical resistivity depends on several factors, an experimental program was developed to study the variation of electrical resistivity of MSW with moisture content, unit weight, stage of decomposition, temperature, composition of MSW, and composition of pore fluid. Fresh, landfilled, and degraded MSW samples were used for this study. Fresh and landfilled MSW samples were collected from the City of Denton landfill. Degraded MSW samples were prepared using laboratory scale reactors.;Laboratory results showed that resistivity is a complex property that depends on numerous factors. A trend of decreasing electrical resistivity with increasing moisture content was observed. For example, the resistivity of fresh MSW sample ;Results also showed that electrical resistivity of MSW decreases with increasing temperature. The resistivity of MSW decreased by about 2% per temperature increase of 1°C. MSW samples having same moisture content and same unit weight had different resistivity values, indicating that the composition of the waste itself affects resistivity. A decrease in electrical resistivity with increasing paper content was observed. On the other hand, an increase in electrical resistivity with increasing "others" (soil and fines) content was observed. Based on the experimental results, the effect of the pore fluid composition on the resistivity of MSW is not significant. Same MSW samples had almost identical resistivity values when prepared using tap water, leachate, or re-use water.;Multiple linear regression analysis was used to quantify the effect of the several factors that affect resistivity. Five predictor variables were considered: moisture content, unit weight, percentage paper, percentage "others" (fines), and organic content. The best model was selected using backward elimination method, best subsets selection method, and stepwise regression method. The developed model was validated using a second set of landfilled MSW samples. ERI was conducted at the same location from which the MSW samples were collected. Using the field resistivity values and the developed model, the moisture content was estimated. The estimated moisture content was then compared with the actual moisture content determined by oven drying the samples at the laboratory. Good agreement was found between the estimated moisture contents and the measured values. The percentage error ranged from 4.9 to 10.2 percent and from 0.5 to 13.8 percent for MSW samples from boreholes B70 and B72, respectively.
机译:操作生物反应器垃圾填埋场可增强废物分解,气体产生和垃圾稳定度。生物反应器垃圾填埋场操作的基本方面是控制水的添加和/或将渗滤液再循环到垃圾填埋场的废物中。由于将垃圾填埋场作为生物反应器垃圾填埋场的趋势正在增加,因此了解垃圾填埋场内的水分分布至关重要。监测生物反应器垃圾填埋场中的水分分布不仅对于沥滤液再循环系统的设计和运行至关重要,而且对于识别由于积水和窜水而导致渗滤液分布不均匀的地点也很重要。对使用电阻率成像(ERI)作为监测生物反应器垃圾填埋场中水分分布的非破坏性工具感兴趣。 ERI可以检测出水分含量的变化,因为电阻率会随着水分含量的变化而变化。 ERI可以生成地下的详细剖面,显示垃圾填埋场中水分的空间分布。但是,这些配置文件不能提供有关废物中水分含量的定量信息。这项研究的总体目标是在电阻率和废物中水分含量之间建立相关性,以便能够确定废物的原位水分含量。没有任何直接取样和实验室测试的城市固体废物(MSW)。由于电阻率取决于几个因素,因此开发了一个实验程序来研究城市固体废弃物的电阻率随水分含量,单位重量,分解阶段,温度,城市固体废弃物的组成和孔隙流体的组成而变化。新鲜,垃圾填埋和降解的城市固体废弃物样品用于本研究。从丹顿市垃圾填埋场收集了新鲜的和填埋的城市固体废弃物样品。使用实验室规模的反应器制备了降解的城市固体废弃物样品。实验室结果表明,电阻率是一个复杂的特性,取决于许多因素。观察到随着水含量增加电阻率降低的趋势。例如,新鲜的城市固体废弃物样品的电阻率;结果还表明,城市固体废弃物的电阻率随温度升高而降低。每升高1°C,MSW的电阻率降低约2%。具有相同水分含量和相同单位重量的MSW样品具有不同的电阻率值,表明废物本身的组成会影响电阻率。观察到电阻率随着纸含量的增加而降低。另一方面,观察到电阻率随“其他”(土壤和细粉)含量的增加而增加。根据实验结果,孔隙流体组成对城市固体废弃物电阻率的影响不显着。当使用自来水,渗滤液或回用水制备相同的MSW样品时,其电阻率值几乎相同。;使用多元线性回归分析来量化影响电阻率的几个因素的影响。考虑了五个预测变量:水分含量,单位重量,纸张百分比,“其他”百分比(细粉)和有机含量。使用向后消除方法,最佳子集选择方法和逐步回归方法选择最佳模型。使用第二套填埋的城市固体废弃物样本验证了开发的模型。在收集MSW样品的同一地点进行了ERI。使用场电阻率值和开发的模型,可以估算出水分含量。然后将估计的水分含量与通过在实验室用烤箱干燥样品确定的实际水分含量进行比较。在估算的水分含量和测量值之间找到了很好的一致性。对于来自B70和B72钻孔的MSW样品,百分比误差分别为4.9%至10.2%和0.5%至13.8%。

著录项

  • 作者

    Shihada, Huda.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Geotechnology.;Engineering Civil.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号