首页> 外文学位 >Magnetic field effects and self-assembled n-type nanostructures to increase charge collection in organic photovoltaics.
【24h】

Magnetic field effects and self-assembled n-type nanostructures to increase charge collection in organic photovoltaics.

机译:磁场效应和自组装n型纳米结构可增加有机光伏中的电荷收集。

获取原文
获取原文并翻译 | 示例

摘要

Photovoltaics, the direct conversion of light energy to electrical energy, offers access to perhaps the best source of clean renewable energy: the sun. The cost to produce electrical energy using photovoltaics could be dramatically reduced by fabricating photovoltaic devices (solar cells) out of carbon-based (organic) semiconducting materials. This dissertation describes two new approaches for increasing the efficiency in organic photovoltaic systems.;The first approach uses magnetic fields to inhibit the recombination of electrons and holes and increase charge collection. Many magnetic field effects in room-temperature organic semiconductor devices can be understood by the magnetoeffects by the interconversion of singlets and triplets (MIST) model. According to the MIST model, magnetic fields split the degeneracy of triplet electron-hole spin states via the Zeeman effect. This splitting alters inter-system crossing between loosely bound singlets and triplets, which can change the overall recombination rate of electron-hole pairs. The organic magnetoresistance in polymer-based organic photovoltaic devices was measured to be positive and on the order of a few percent. In addition, the magnitude of the organic magnetoresistance decreased with increasing bias and with increasing concentration of electron-accepting fullerenes. This behavior is consistent with the MIST model. The MIST model was then extended to describe magnetic field effects in photocurrents produced by organic photovoltaic devices. Single-layer polymer devices showed an increase in photocurrent of ∼6--9% with the application of relatively weak magnetic fields (∼30 mT) due to a reduction in the recombination rate of non-geminate electron-hole pairs. However, in bulk-heterojunction devices the magnetic field effect on photocurrent was significantly diminished with just a few percent by weight of fullerenes. These results are shown to be consistent with the robust MIST model: electron-accepting fullerenes reduce the population of loosely bound electron-hole pairs, thereby quenching the magnetic field effects.;The second approach to increase charge collection in organic photovoltaics uses self-assembled perylene diimide nanostructures in a nanofabric heterojunction. Cyclic voltammetry, photoluminescence quenching and bilayer device measurement shows that perylene diimides are good electron acceptors and potential alternatives to fullerene-based acceptors. Perylene diimides are also excellent n-type conductors; the field-effect transistor mobility of bis(octyl)-perylenediimide (PDI-C8) was measured to be mue =0.05+/-0.01 cm2 V-1 s-1 . In addition, flat perylene diimide molecules tend to pi-pi stack to form nanofibers and nanofabrics using a simple solvent mixture self-assembly procedure. PDI-C8 nanofibers were incorporated into a novel device architecture---the nanofabric hetero junction---to increase collection of electrons. Devices incorporating PDI-C8 nanofibers exhibited a 110% increase in the short circuit current density compared to devices without the nanofibers. This increase is attributed to the fibers increasing the donor-acceptor interfacial area, transporting electrons out of the device along dedicated conduction pathways and reducing the build up of space-charge.
机译:光伏是将光能直接转换为电能的装置,它可以获取清洁的可再生能源的最佳来源:太阳。通过使用碳基(有机)半导体材料制造光伏器件(太阳能电池),可以显着降低使用光伏产生电能的成本。本文介绍了两种提高有机光伏系统效率的新方法。第一种方法是利用磁场抑制电子和空穴的复合并增加电荷的收集。通过单峰和三重态(MIST)模型的相互转换,磁效应可以理解室温有机半导体器件中的许多磁场效应。根据MIST模型,磁场通过塞曼效应分裂了三重态电子-空穴自旋态的简并性。这种分裂改变了松散结合的单线态和三重态之间的系统间交叉,这可以改变电子-空穴对的整体复合率。经测量,基于聚合物的有机光伏器件中的有机磁阻为正,约为百分之几。另外,有机磁阻的幅度随着偏压的增加和电子接受富勒烯浓度的增加而降低。此行为与MIST模型一致。然后,将MIST模型扩展为描述有机光伏设备产生的光电流中的磁场效应。单层聚合物器件在施加相对弱的磁场(约30 mT)时,由于非叠置电子-空穴对的复合速率降低,显示出光电流增加了约4--9%。然而,在本体异质结器件中,仅以重量百分比的富勒烯,对光电流的磁场影响就大大减小了。这些结果表明与稳健的MIST模型相符:电子接受富勒烯减少了松散结合的电子-空穴对的数量,从而消除了磁场效应。;第二种增加有机光伏电池电荷收集的方法是使用自组装fab异质结中的二酰亚胺纳米结构。循环伏安法,光致发光猝灭和双层器件测量表明,per二酰亚胺是良好的电子受体,是基于富勒烯的受体的潜在替代物。 ylene二酰亚胺也是极好的n型导体。双(辛基)-ylene二酰亚胺(PDI-C8)的场效应晶体管迁移率经测量为mue = 0.05 +/- 0.01 cm2 V-1 s-1。另外,使用简单的溶剂混合物自组装程序,平面per二酰亚胺分子易于pi-pi堆叠以形成纳米纤维和纳米纤维。 PDI-C8纳米纤维被并入一种新型的器件架构-纳米织物异质结-,以增加电子的收集。与没有纳米纤维的设备相比,装有PDI-C8纳米纤维的设备的短路电流密度提高了110%。这种增加归因于纤维增加了供体-受体的界面面积,沿着专用的传导路径将电子传输出器件,并减少了空间电荷的积累。

著录项

  • 作者

    Carter, Austin Roberts.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Physics Solid State.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号