首页> 外文学位 >Modification of low dielectric constant materials for ULSI multilevel interconnection by ion implantation.
【24h】

Modification of low dielectric constant materials for ULSI multilevel interconnection by ion implantation.

机译:通过离子注入对用于ULSI多级互连的低介电常数材料进行修改。

获取原文
获取原文并翻译 | 示例

摘要

As integrated circuit (IC) dimensions continue to decrease, RC delay, cross-talk noise, and power dissipation of the interconnect structure become limiting factors for ultra-large-scale integration of integrated circuits. Low dielectric constant materials are being introduced and developed to replace silicon dioxide as inter level dielectrics into current interconnect technologies to meet RC delay goals and minimize cross-talk.; These low κ films generally have dielectric constants less than 3 (vs. 4 for silicon dioxide) and very poor mechanical strength. The elastic modulus (E) of the low κ film is typically less than 10Gpa, compared with 70Gpa for SiO2. The poor mechanical strength of the low κ dielectric films increases the risk of thermo-mechanical failures within the Cu/low κ interconnect structure; e.g. thin film delamination and cracking. Maintaining the mechanical integrity of the low κ films with the stresses of fab processing, packaging and reliability testing has proven challenging. Therefore, surface hardening is necessary to withstand processing (e.g. CMP). This research work will address the methods to enhance the mechanical strength of low dielectric films. Results of two classes of material (i.e. Xerogel (porous) and methyl silsesquioxane (MSQ (organic)) are discussed.; Thin films of Ultra-Low κ materials such as Xerogel (κ = 1.76) and porous MSQ (κ = 2.2) were implanted with argon, neon, nitrogen, carbon and helium with 2 × 1015 cm−2 and 1 × 1016 cm−2 dose at energies varying from 20 to 150 keV at room temperature. In this work we showed that the surface hardness of the porous films can be improved five times as compared to the as-deposited porous films by implanting Ar with 1 × 10 16 cm−2 doses at 50 keV, sacrificing only a slight increase (∼15%) in dielectric constant (e.g., from 1.76 to 2.0). The hardness persists after 450°C annealing. The ion implantation process suppressed the moisture uptake in the porous low κ films. Surface chemical modification made the films hydrophobic.; The results also reveal one possible route to attain the “zero thickness” requirement for interconnect systems. It is shown that ion implantation can prevent the penetration of chemical gases such as CVD precursors into the Ultra-Low κ dielectrics during a CVD process. Surface modification of MSQ by converting its surface to a thin intrinsic barrier resembling SiO 2 dramatically reduced Cu ion penetration into the film. Surface modification by ion implantation is therefore a powerful strategy to realize the future requirement of ultra-thin barriers. Ion implantation improved the adhesion property of Cu/Low-κ, interface.
机译:随着集成电路(IC)尺寸的不断减小,RC延迟,串扰噪声和互连结构的功耗成为集成电路超大规模集成的限制因素。低介电常数材料正在被引入和开发,以代替二氧化硅作为层间电介质进入当前的互连技术,以满足RC延迟目标并最大程度地减少串扰。这些低κ薄膜的介电常数通常小于3(二氧化硅为4),机械强度非常差。低κ膜的弹性模量(E)通常小于10Gpa,而SiO 2 为70Gpa。低κ介电膜的机械强度差,会增加Cu /低κ互连结构内部发生热机械故障的风险;例如薄膜分层和开裂。在晶圆加工,封装和可靠性测试的压力下保持低κ膜的机械完整性已被证明具有挑战性。因此,必须进行表面硬化处理才能承受加工(例如CMP)。这项研究工作将解决提高低介电膜机械强度的方法。讨论了两类材料的结果(即Xerogel(多孔)和甲基倍半硅氧烷(MSQ)(有机));超低κ材料的薄膜,如Xerogel(κ= 1.76)和多孔MSQ(κ= 2.2)。注入2×10 15 cm -2 和1×10 16 cm −的氩,氖,氮,碳和氦室温下能量在20到150 keV之间变化的2 剂量,这项工作表明,通过注入Ar 1可以使多孔膜的表面硬度比刚沉积的多孔膜提高五倍。 ×10 16 cm −2 剂量在50 keV时,只牺牲了介电常数的微小增加(〜15%)(例如,从1.76到2.0),硬度保持不变经过450°C退火后,离子注入过程抑制了多孔低κ薄膜的水分吸收;表面化学改性使薄膜具有疏水性;结果还揭示了实现“零硫”的一种可能途径。互连系统的“安全性”要求。结果表明,离子注入可以防止诸如CVD前体之类的化学气体在CVD过程中渗透到超低κ电介质中。通过将MSQ的表面转变为类似于SiO 2 的薄固有势垒来进行表面改性,从而大大降低了Cu离子渗入膜中的能力。因此,通过离子注入进行表面改性是实现未来超薄势垒需求的有力策略。离子注入改善了Cu /Low-κ界面的粘附性能。

著录项

  • 作者

    Roy, Alok Nandini Usha.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Physics Condensed Matter.; Physics Atomic.; Physics Molecular.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.1301
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号