首页> 外文学位 >Self-organization and resource management in distributed sensor networks.
【24h】

Self-organization and resource management in distributed sensor networks.

机译:分布式传感器网络中的自组织和资源管理。

获取原文
获取原文并翻译 | 示例

摘要

With recent advances in communication and sensing technologies, distributed sensor networks (DSNs) are becoming more viable for civilian and military applications. A DSN typically consists of a sensor node layer having a large number of small, low power, low cost sensors connected as an ad-hoc network and communicating in a peer-to-peer fashion. The decision node layers of the DSN are usually hierarchically organized to collect the data from its sensor node layer, extract important and relevant features, sensor node layer to best achieve a specified sensing task and resource management at the decision node layer levels are two critically important research issues for bringing such DSNs closer to application.; In this work, a task-oriented self-organization algorithm that enables the formation of a sensor group for a task announced to the sensor system is proposed. It sequentially selects the best-matched sensors via the iterative use of a leader election algorithm and a residual task calculation algorithm. To improve the associated communication overhead, the sensor node location information obtained from a localization algorithm is used in task broadcasting thus allowing the implementation of the algorithm to be confined to a dynamically maintained contributor group. Sensor localization aspect is based on a refinement of an algorithm that utilizes only the neighborhood information of each sensor node corresponding to each of its preset radio transmission power levels.; Resource management within the decision node layer must account for, and be robust against, various types of time-varying delays and nonlinearities that are inherent in a communication network setting. This is especially the case when the DSN is deployed in a highly dynamic environment. Resource management must also be carried out so that nodes generating data/features perceived to be more important receive a higher proportion of the limited resources available at each decision node. A virtual queuing framework is proposed to address these concerns. Its effectiveness is demonstrated via the design of H-norm based feedback controllers.; Network calculus notions are refined and generalized to account for the time-varying link delays, and with the virtual queuing framework in place, these newly developed notions are used to arrive at feedback controllers that enable set point tracking of node buffers and rate control of incoming data sources.
机译:随着通信和传感技术的最新发展,分布式传感器网络(DSN)在民用和军事应用中变得越来越可行。 DSN通常由传感器节点层组成,该节点层具有大量作为自组织网络连接并以对等方式通信的小型,低功耗,低成本传感器。通常将DSN的决策节点层进行分层组织,以从其传感器节点层收集数据,提取重要和相关的特征,传感器节点层以最佳地完成指定的传感任务并在决策时进行资源管理节点层级别是使此类DSN更接近应用程序的两个至关重要的研究问题。在这项工作中,提出了一种面向任务的自组织算法,该算法能够为宣布给传感器系统的任务形成传感器组。通过迭代使用领导者选举算法剩余任务计算算法,依次选择最匹配的传感器。为了改善相关的通信开销,将从本地化算法获得的传感器节点位置信息用于任务广播,从而使该算法的实现限于动态维护的贡献者组。传感器定位方面基于算法的改进,该算法仅利用与每个传感器节点的预设无线电发射功率电平相对应的每个传感器节点的邻域信息。决策节点层内的资源管理必须考虑通信网络设置中固有的各种类型的时变延迟和非线性,并使其具有鲁棒性。当DSN部署在高度动态的环境中时,尤其如此。还必须执行资源管理,以便生成被认为更重要的数据/功能的节点在每个决策节点上获得的可用资源的比例更高。提出了一个虚拟排队框架来解决这些问题。通过基于H 范数的反馈控制器的设计证明了其有效性。对网络演算概念进行了完善和概括,以解决随时间变化的链路延迟,并且在适当的虚拟排队框架中,这些新开发的概念用于到达反馈控制器,从而实现节点缓冲区的设定点跟踪和传入速率控制数据源。

著录项

  • 作者

    Zhang, Jinsong.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号