首页> 外文学位 >Non-Linear MMIC Design using Aluminum Gallium Nitride/Gallium Nitride HEMT Technology.
【24h】

Non-Linear MMIC Design using Aluminum Gallium Nitride/Gallium Nitride HEMT Technology.

机译:使用氮化铝镓/氮化镓HEMT技术的非线性MMIC设计。

获取原文
获取原文并翻译 | 示例

摘要

High output power and high efficiency are two desirable factors for RF/microwave power amplifiers. Higher power added efficiency (PAE) leads to less DC power consumption by the circuit, increasing the battery life and relaxing the heat dissipation requirements, while high power density results in smaller, simpler circuitry. Monolithic Microwave Integrated Circuits (MMICs) are of great interest for microwave applications due to their much smaller size compared to the hybrid implementations. Among the existing microwave device technologies, AlGaN/GaN high electron mobility transistor (HEMT) technology is rapidly emerging as the high-power, high-frequency device of choice for future wireless applications. AlGaN/GaN HEMTs have superior power-density and much higher breakdown voltage compared with other technologies, and excellent power performance has been reported for devices as well as for MMIC power amplifiers.;The goal of this thesis is focused on demonstration of state of the art performance from highly non-linear MMICs using AlGaN/GaN HEMTs. In the area of high efficiency power amplifier design, we will study the high frequency performance limitations of class E and Class F MMIC power amplifier topologies, and demonstrate the work done in improving the circuit performance compared to the previous results. We will show the limitations of the class E topology and demonstrate state of the art performance achieved from a MMIC class F power amplifier in C-band using our standard AlGaN/GaN HEMT technology. In the area of frequency conversion circuits, we will demonstrate a state of the art frequency doubler MMIC designed at C band, and discuss the design challenges regarding the large signal modeling of the device and the implementation of the high Q resonant passives required to achieve high performance from this circuit.;The ability to successfully implement the AlGaN/GaN HEMTs into working circuits depends greatly on the accuracy of the available device model and the ability to accurately design the passive matching networks and tuning elements. In this work, a scalable non-linear large signal model was extracted for AlGaN/GaN HEMTs for use in circuit design and excellent match between simulations and measurements was obtained for the DC, small signal and power performance including load-pull and source-pull power and PAE contours. A systematic method for design of complex matching networks and tuning elements using Sonnet simulations was developed and excellent agreement between the equivalent circuit models, Sonnet simulations and measured s-parameter data from fabricated resonators and matching networks was demonstrated. We will show that these tools, along with our design approach in optimizing the performance of each circuit are the key to the high performance of the circuits presented in this work.
机译:高输出功率和高效率是RF /微波功率放大器的两个理想因素。更高的功率附加效率(PAE)可以减少电路的直流功耗,从而延长电池寿命并放宽散热要求,而高功率密度则可以使电路更小,更简单。单片微波集成电路(MMIC)由于与混合实现相比要小得多,因此对微波应用非常感兴趣。在现有的微波设备技术中,AlGaN / GaN高电子迁移率晶体管(HEMT)技术正在迅速发展,成为未来无线应用的首选高功率,高频设备。与其他技术相比,AlGaN / GaN HEMT具有更高的功率密度和更高的击穿电压,并且已经报道了器件以及MMIC功率放大器的出色功率性能。使用AlGaN / GaN HEMT的高度非线性MMIC获得最佳的艺术性能。在高效功率放大器设计领域,我们将研究E类和F类MMIC功率放大器拓扑的高频性能局限性,并展示与以前的结果相比在改善电路性能方面所做的工作。我们将展示E类拓扑的局限性,并展示通过使用我们的标准AlGaN / GaN HEMT技术在C波段中的MMIC F类功率放大器实现的最新性能。在频率转换电路领域,我们将演示在C波段设计的最新倍频器MMIC,并讨论有关器件大信号建模和实现高Q谐振无源器件所需的设计挑战。成功地将AlGaN / GaN HEMT应用于工作电路的能力在很大程度上取决于可用器件模型的精度以及准确设计无源匹配网络和调谐元件的能力。在这项工作中,针对AlGaN / GaN HEMT提取了可扩展的非线性大信号模型以用于电路设计,并获得了直流,小信号和功率性能(包括负载拉和源拉)的仿真与测量之间的出色匹配。电源和PAE轮廓。开发了一种使用Sonnet仿真技术设计复杂匹配网络和调谐元件的系统方法,并证明了等效电路模型,Sonnet仿真以及从制造的谐振器和匹配网络测得的s参数数据之间的出色一致性。我们将展示这些工具以及我们用于优化每个电路性能的设计方法,是实现本文所述电路高性能的关键。

著录项

  • 作者

    Zomorrodian, Valiallah.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 D.Eng.
  • 年度 2011
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号