首页> 外文学位 >I. Gas adsorption properties and porosity of transition metal-based cyanogels. II. Novel energy transfer processes in organic light-emitting devices.
【24h】

I. Gas adsorption properties and porosity of transition metal-based cyanogels. II. Novel energy transfer processes in organic light-emitting devices.

机译:I.过渡金属基氰基凝胶的气体吸附性能和孔隙率。二。有机发光器件中的新型能量转移过程。

获取原文
获取原文并翻译 | 示例

摘要

The gas adsorption properties and porosity of cyanide-bridged transition metal-based gels are investigated in the first part of this dissertation. The cyanide bridges, connecting two transition metal centers, are characteristic of these gels; hence, these gels are termed cyanogels. Aerogel versus xerogel structures have a profound effect, both, on the thermodynamics and kinetics of gas adsorption on these cyanogels. Carbon dioxide is selectively adsorbed on palladium-cobalt-based cyanogels; the adsorption is fully reversible on both types of gels discussed. The thermodynamics and kinetics of the gas adsorption processes on these gels are analyzed here. From the ease and reproducibility of the CO2 desorption and the associated enthalpy values, it is concluded that CO2 is physisorbed on these gels. Both the adsorption and desorption processes are first-order in the gels. Adsorption of carbon monoxide on the palladium-cobalt cyanogels is also investigated. Unlike CO 2 physisorption, carbon monoxide is chemisorbed on these gels. An uptake of CO brings about a profound change in the xerogel morphology.; The palladium-cobalt-based aerogels possess both micro- and mesoporosity; the xerogels are predominantly microporous with a narrow microporosity. The aerogel surfaces are found to be fractal as analyzed by gas adsorption. Unlike the aerogels, the xerogels do not possess surface fractality. The mechanism of adsorption of different gases on these gels is analyzed based on the gel morphologies.; These transition metal-based gels are promising for a variety of applications such as heterogeneous catalysts, gas filters and magnetic materials. The porosity of these gels can be exploited to make gel-embedded filters to separate mixtures of gases based on the their differential adsorption propensities. The reversible adsorption of CO2 can be harnessed practically by using these gels as CO2 storage reservoirs.; In the second part of this dissertation, the first, balanced, white-emitting organic light-emitting device (OLED) is demonstrated. This OLED is based on a novel mechanism of energy transfer termed interlayer sequential energy transfer. The relative red-, green-, and blue-emission intensities in this OLED can be independently tuned by the means of two separate parameters.
机译:本文的第一部分研究了氰化物桥过渡金属基凝胶的气体吸附性能和孔隙率。这些凝胶的特征是连接两个过渡金属中心的氰化物桥。因此,这些凝胶称为 cyanogels 。气凝胶与干凝胶的结构对这些氰化物上气体吸附的热力学和动力学都具有深远的影响。二氧化碳被选择性地吸附在钯钴基氰基凝胶上。吸附在所讨论的两种类型的凝胶上是完全可逆的。在这里分析了气体在这些凝胶上的吸附过程的热力学和动力学。从CO 2 脱附的简便性和可重复性及相关的焓值可以得出结论,CO 2 被物理吸附在这些凝胶上。吸附和解吸过程都是凝胶中的一级反应。还研究了一氧化碳在钯-钴氰化物上的吸附。与CO 2 的物理吸附不同,一氧化碳被化学吸附在这些凝胶上。吸收一氧化碳会引起干凝胶形态的深刻变化。钯钴基气凝胶同时具有微孔和中孔性。干凝胶主要是微孔的,具有狭窄的微孔。通过气体吸附分析发现气凝胶表面是分形的。与气凝胶不同,干凝胶不具有表面分形性。根据凝胶的形态分析了不同气体在这些凝胶上的吸附机理。这些基于过渡金属的凝胶有望用于多种应用,例如多相催化剂,气体过滤器和磁性材料。这些凝胶的孔隙率可用于制造嵌入凝胶的过滤器,以基于它们的不同吸附倾向来分离气体混合物。通过将这些凝胶用作CO 2 储库,可以实际利用CO 2 的可逆吸附。在本论文的第二部分中,对第一个平衡的,发白光的有机发光器件(OLED)进行了说明。该OLED基于一种新的能量转移机制,称为层间顺序能量转移。可以通过两个单独的参数独立地调整此OLED中的相对红色,绿色和蓝色发射强度。

著录项

  • 作者

    Deshpande, Rahul Shrikant.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemistry Inorganic.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号