首页> 外文学位 >Novel Waveguide Architectures for Light Sources in Silicon Photonics.
【24h】

Novel Waveguide Architectures for Light Sources in Silicon Photonics.

机译:硅光子学中用于光源的新型波导架构。

获取原文
获取原文并翻译 | 示例

摘要

Of the many challenges which are threatening to derail the success trend set by Moore's Law, perhaps the most prominent one is the "Interconnect Bottleneck". The metallic interconnections which carry inter-chip and intra-chip signals are increasingly proving to be inadequate to carry the enormous amount of data due to band-width limitations, cross talk and increased latency. A silicon based optical interconnect is showing enormous promise to address this issue in a cost effective manner by leveraging the extremely matured CMOS fabrication infrastructure. An optical interconnect system consists of a low loss waveguide, modulator, photo detector and a light source. Of these the only component yet to be demonstrated in silicon is a CMOS compatible electrically pumped silicon based laser.;The present work is our endeavor towards the goal of a practical light source in silicon. To this end we have focused our efforts on horizontal slot waveguide which consists of a nm thin low index silica layer sandwiched between two high index silicon layers. Such a structure provides an exceptionally high confinement for the TM-like mode in the thin silica slot. The shallow ridge profile of the waveguide allows in principle for lateral electrical access to the core of the waveguide for excitation of the slot embedded gain material like erbium or nano-crystal sensitized erbium using tunneling, polarization transfer or transport.;Low losses in the proposed structure are paramount due to the low gain expectation (∼1dB/cm) from CMOS compatible gain media. This dissertation details the novel techniques conceived to mitigate the severe lateral radiation leakage loss of the TM-like mode in these waveguides and resonators using "Magic Widths" and "Magic Radii" designs. New fabrication techniques are discussed which were developed to achieve ultra-smooth waveguide surfaces to substantially reduce the scattering induced losses in the Silicon-on-Insulator (SOI) high index contrast system. This enabled us to achieve resonators with Qs of 1.6x106 for the TE-like mode in non-slot configurations and 3x105 for the TM-like mode in full slot configuration, the highest yet reported for this type of structure and close to our design requirements for a laser.;Erbium was incorporated into the silica slot just 8.3 nm thick and photoluminescence was observed in full waveguide configuration. A simple phenomenological model based on spontaneous emission into a waveguide mode was developed, which predicted >10x Purcell enhancement of the luminescence decay in these slot waveguides even in the absence of a resonator, a result also yielded by a rigorous quantum electrodynamic analysis. These enhanced spontaneous emission rates were experimentally verified using time resolved photoluminescence decay and luminescence power measurements.;The results so far indicate that these slot structures could be the enablers for very efficient LEDs due to the highly preferential characteristic of the spontaneous emission to go into the single guided mode. The future goal will be to harness this behavior for novel silicon photonic light sources.
机译:在可能使摩尔定律所确立的成功趋势脱轨的众多挑战中,最突出的挑战可能是“互连瓶颈”。由于带宽限制,串扰和增加的等待时间,承载芯片间和芯片内信号的金属互连越来越不适合承载大量数据。通过利用极其成熟的CMOS制造基础架构,基于硅的光学互连技术显示出以经济有效的方式解决此问题的巨大前景。光学互连系统由低损耗波导,调制器,光电探测器和光源组成。在这些组件中,唯一尚待证明的组件是CMOS兼容的电泵浦硅基激光器。本工作是我们朝着实现实用光源的目标而努力。为此,我们将精力集中在水平缝隙波导上,该缝隙波导由一个纳米薄的低折射率二氧化硅层夹在两个高折射率硅层之间组成。这种结构为薄二氧化硅槽中的TM型模式提供了极高的限制。波导的浅脊轮廓原则上允许横向电访问波导的纤芯,从而通过隧穿,极化转移或传输来激发缝隙嵌入的增益材料(如或纳米晶敏化的excitation)。由于来自CMOS兼容增益介质的低增益期望(〜1dB / cm),因此结构至关重要。本文详细介绍了采用“ Magic Widths”和“ Magic Radii”设计减轻这些波导和谐振器中类似TM模式的严重横向辐射泄漏损失的新颖技术。讨论了开发新的制造技术以实现超光滑的波导表面,从而大大降低了绝缘体上硅(SOI)高折射率对比系统中的散射引起的损耗。这使我们能够在非槽型配置中实现TE类模式的Qs为1.6x106的谐振器,在全槽型配置中实现类TM模式的Qs为3x105的谐振器,这是该类型结构迄今报道的最高值,接近我们的设计要求E掺入到二氧化硅缝隙中,厚度仅为8.3 nm,在全波导结构中观察到光致发光。建立了一种基于自发发射到波导模式的简单现象学模型,该模型预测即使在没有谐振器的情况下,这些缝隙波导中的衰变也能以大于10倍的赛尔级增强,这也是通过严格的量子电动力学分析得出的。这些增强的自发发射率已通过时间分辨的光致发光衰减和发光功率测量进行了实验验证。到目前为止的结果表明,由于自发发射的高度优先特性,这些槽结构可以成为非常高效的LED的使能器。单引导模式。未来的目标将是利用这种行为开发新颖的硅光子光源。

著录项

  • 作者

    Tummidi, Ravi Sekhar.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.;Physics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号