首页> 外文学位 >Polycrystalline diamond thin-film Fabry-Perot optical resonators on silicon.
【24h】

Polycrystalline diamond thin-film Fabry-Perot optical resonators on silicon.

机译:硅上的多晶金刚石薄膜Fabry-Perot光学谐振器。

获取原文
获取原文并翻译 | 示例

摘要

Micro-optical devices have applications ranging from gas detection to optical computing. Michigan State University has the capability to deposit high optical quality diamond thin films on silicon substrates using microwave cavity plasma reactors. Diamond is of interest for optical applications due to its high index of refraction and wide spectral transmission range. Combining polycrystalline diamond thin film deposition techniques and MEMS fabrication techniques, an array of optical wavelength Fabry-Perot resonators on a silicon wafer has been constructed and accurately modeled.; This thesis describes the first fabrication of diamond thin-film Fabry-Perot resonators on silicon wafers. Standard fabrication techniques are employed, including thermal oxidation, photolithography, PECVD diamond deposition, anisotropic wet etching, and sputtering. The optical performance of the resonators is investigated by measuring the through-transmission of the device as a function of wavelength. Performance is correlated with the physical properties of the device, including surface roughness.; Transmission of the device is simulated with multi-layer optics theory. A novel method of incorporating surface roughness into standard multi-layer optics theory is developed in the thesis, and applied to the resonators considering the surface roughness of the diamond film to be modeled by Gaussian and non-Gaussian distributions. The models provide valuable guidance into the design of the resonators.; Atomic Force Microscopy is employed to characterize the surface roughness of the films. The films are found to be approximately Gaussian, but with non-negligible amounts of skewness and kurtosis measured. A Pearson Type-IV distribution is used in the optical simulation to represent non-Gaussian roughness in the diamond film. Use of this distribution improves the fit between theory and experimental measurements.
机译:微光学设备的应用范围从气体检测到光学计算。密歇根州立大学有能力使用微波腔等离子体反应器在硅衬底上沉积高光学质量的金刚石薄膜。金刚石因其高折射率和宽光谱传输范围而在光学应用中受到关注。结合多晶金刚石薄膜沉积技术和MEMS制造技术,已经构建了硅晶片上的光学波长Fabry-Perot谐振器阵列,并对其进行了精确建模。本文介绍了在硅晶片上首次制造金刚石薄膜法布里-珀罗谐振器的方法。采用标准的制造技术,包括热氧化,光刻,PECVD金刚石沉积,各向异性湿蚀刻和溅射。谐振器的光学性能是通过测量器件的透射率随波长的变化来研究的。性能与设备的物理特性(包括表面粗糙度)相关。使用多层光学理论模拟设备的传输。本文提出了一种将表面粗糙度结合到标准多层光学理论中的新方法,并考虑到要通过高斯和非高斯分布建模的金刚石膜的表面粗糙度,将其应用于谐振器。这些模型为谐振器的设计提供了宝贵的指导。原子力显微镜用于表征薄膜的表面粗糙度。发现这些薄膜大约是高斯薄膜,但测得的偏斜度和峰度不可忽略。光学仿真中使用Pearson IV型分布来表示金刚石薄膜中的非高斯粗糙度。使用此分布可提高理论测量与实验测量之间的拟合度。

著录项

  • 作者

    Booth, Roger Allen, Jr.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.6230
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号