首页> 外文学位 >Wafer bonding with low-temperature grown compound semiconductor materials for optoelectronic device application.
【24h】

Wafer bonding with low-temperature grown compound semiconductor materials for optoelectronic device application.

机译:晶圆结合低温生长的化合物半导体材料,用于光电器件应用。

获取原文
获取原文并翻译 | 示例

摘要

This work uses a novel approach to achieve wafer bonding technique for high-brightness light-emitting diode (HB-LED) application with low-temperature-grown compound semiconductor materials as the bonding agents. These low-temperature grown materials were grown by molecular beam epitaxy ∼100°C and were found that their microstructures can be changed to either amorphous or polycrystalline structures by adjusting the group V flux during growth. For amorphous (Ga,As) material, it could be recrystallized to form polycrystalline structure as low as 300°C. This recystallization process strongly suggests that the atoms have moved around during annealing. It is only natural to assume that the movements of atoms may enhance the interchange of the atoms across the bonding interface, and hence, two wafers will bond if the low-temperature grown material was utilized as a bonding agent.; Two main material system were studied in this thesis, including (Ga,As) and (Ga,P). Several techniques were used to calibrate the properties of as-grown materials and the bonded samples, such as transmission electron microcopy, light transmission measurement, current-voltage (I-V) measurement. From the data we obtained, we found the polycrystalline (Ga,As) and (Ga,P) are better materials for light transmission, which is a very important parameter for HB-LED devices. Moreover, the I-V characteristics of bonded samples indicate that the ohmic behavior can be achieved with polycrystalline materials with Ga-rich condition.; Finally, I developed two methods to transfer a GaAs-based device layer on a transparent GaP substrate (for emission wavelength longer than 560 nm), which involve multiple processing techniques. One approach also includes the regrowth step, which further indicates the bonded sample can further be processed at high temperatures.
机译:这项工作使用一种新颖的方法来实现以低温生长的化合物半导体材料作为粘接剂的高亮度发光二极管(HB-LED)应用的晶片粘接技术。这些低温生长的材料是通过〜100°C的分子束外延生长的,发现通过调节生长过程中的V组通量,它们的微观结构可以转变为非晶或多晶结构。对于非晶(Ga,As)材料,可以将其重结晶以形成低至300°C的多晶结构。这种重新囊化过程强烈表明原子在退火过程中到处运动。仅自然地假设原子的运动可以增强原子在键合界面上的交换,因此,如果将低温生长材料用作键合剂,则两个晶片将键合。本文研究了两种主要的材料体系,即(Ga,As)和(Ga,P)。几种技术被用于校准生长材料和键合样品的性能,例如透射电子显微镜,透光率测量,电流-电压( I-V )测量。根据我们获得的数据,我们发现多晶(Ga,As)和(Ga,P)是更好的透光材料,这是HB-LED器件非常重要的参数。此外,键合样品的 I-V 特性表明,在富含Ga的条件下,多晶材料可以实现欧姆特性。最后,我开发了两种方法来转移基于GaAs的器件层到透明GaP衬底上(发射波长大于560 nm),这涉及多种处理技术。一种方法还包括再生步骤,该步骤进一步表明结合的样品可以在高温下进一步处理。

著录项

  • 作者

    Chang, Kuo-Lih.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.5666
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号