首页> 外文学位 >A study of novel silicon carbide composites: Design, fabrication, characterization and modeling.
【24h】

A study of novel silicon carbide composites: Design, fabrication, characterization and modeling.

机译:新型碳化硅复合材料的研究:设计,制造,表征和建模。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on the design, fabrication, experimental characterization and analytical modeling of a group of novel nanostructured and microporous SiC composites. Nanostructured and microporous morphologies provide materials with the high specific strength and low thermal conductivity required for multifunctional integrated thermal structures. Thus, this family of engineered materials serves as innovative candidate materials for NASA Space Launch Initiative and hypersonic aircraft development, as well as wide spread commercial applications.; The technical objectives were to develop a novel lightweight, high specific strength and low thermal conductivity material to serve as a critical component which joins the hot external skin to the cool inside propellant tanks and structure. These objectives were met by accomplishment of the following five tasks: (1) Conceptional design; (2) Material components identification and acquirement; (3) Fabrication of test coupons; (4) Experimental characterization of mechanical and thermal properties; (5) Development of analytical models.; By varying the processing procedure and types of reinforcements, significantly reduced thermal conductivity was achieved with the unique microstructure.; Explicit models were built for prediction of effective thermal conductivity of the materials under investigation. One is a semi-empirical model from thermal resistance theory, with which thermal conductivity can be predicted efficiently once a material constant C is determined experimentally from the matrix materials. Mathematical models based on EMA (Effective Medium Approximation) were developed to predict thermal conductivity of composites with dispersion of coated spheres when coating thickness is not negligible, or with both micron-sized and nano-sized reinforcement particles. The EMA models in present work advance traditional EMA models from prediction of two-phase material systems to three-phase composites. To the knowledge of the author, mathematical model for three-phase composites has never been explicitly solved in the literature.; FEM (Finite Element Models) were constructed to systematically study the parameters affecting effective thermal conductivity. Functional dependency of effective thermal conductivity on the constituent properties and their distribution was investigated, which would offer sufficient guide lines for material optimization. The simulation of composite structure results in good correlation with experimental data and the mathematical EMA predictive models.
机译:本文主要研究一组新型的纳米结构和微孔SiC复合材料的设计,制备,实验表征和分析模型。纳米结构和微孔形态为材料提供了多功能集成热结构所需的高比强度和低导热性。因此,该系列工程材料可作为NASA太空发射计划和超音速飞机开发以及广泛的商业应用的创新候选材料。技术目标是开发一种新颖的轻质,高比强度和低导热率的材料,以作为将热的外部蒙皮与冷却的推进剂罐和结构连接起来的关键组件。这些目标通过完成以下五个任务得以实现:(1)概念设计; (2)材料成分的识别与获取; (3)制造测试券; (4)机械和热性能的实验表征; (5)分析模型的开发;通过改变处理程序和增强材料的类型,独特的微观结构显着降低了热导率。建立了显式模型来预测所研究材料的有效导热系数。一种是基于热阻理论的半经验模型,一旦从基质材料中通过实验确定了材料常数 C ,就可以有效地预测导热系数。开发了基于EMA(有效介质近似值)的数学模型,以预测当涂层厚度不可忽略时具有涂层球体分散性或微米级和纳米级增强颗粒的复合材料的导热系数。当前工作中的EMA模型将传统的EMA模型从两相材料系统的预测扩展到了三相复合材料。据作者所知,文献中从未明确解决三相复合材料的数学模型。构造了有限元模型(FEM)来系统地研究影响有效导热系数的参数。研究了有效导热率对组成特性及其分布的功能依赖性,这将为材料优化提供足够的指导。复合结构的仿真结果与实验数据和EMA数学预测模型具有良好的相关性。

著录项

  • 作者

    Zhang, Mei.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号