首页> 外文学位 >Fundamental understanding of the biochemical conversion of Buddleja davidii to fermentable sugars.
【24h】

Fundamental understanding of the biochemical conversion of Buddleja davidii to fermentable sugars.

机译:对蟾蜍Buddleja davidii生化转化为可发酵糖的基本理解。

获取原文
获取原文并翻译 | 示例

摘要

Bioethanol is becoming one of the leading substitutes for fossil fuel and is being commercially produced from corn and sugarcane. Lignocellulosic bioethanol is currently being explored as an alternative to corn/sugarcane ethanol because the former is not involved with the "fuel or food" issue. Many biomass sources are being examined but the importance is to find those with attractive agro-energy features. Thus, there is always a necessity to broaden the bioresource base. In addition, cellulosic ethanol production is more challenging than corn/sugarcane ethanol production because biomass is resistant to chemical and biological degradation. To reduce the recalcitrant nature of biomass, a pretreatment stage is required but it is the most intensive operating/operating cost component of cellulosic ethanol production. Therefore, research is heavily focused on understanding the effect of pretreatment technologies on the fundamental characteristics of lignocellulosic biomass.;The first study in the thesis investigates Buddleja davidii as a potential biomass source for bioethanol production. The work focuses on the determination of ash, extractives, lignin, hemicellulose, and cellulose content in this plant, as well as detailed elucidation of the chemical structures of both lignin and cellulose by NMR spectroscopy. B. davidii has several unique agro-energy features ranging from its distribution and wide range of growth habitat to aspects of its composition (cellulose DP of 100), as well as some undesired characteristics such as, relatively high lignin (30%) and hemicellulose (34%) contents, low cellulose content (35%), and a high cellulose crystallinity index (0.55).;To determine the balance between these positive and negative factors on potential glucose yields, evaluation and enzymatic hydrolysis behavior of B. davidii was needed. The second study presents research on the ethanol organosolv pretreatment of B. davidii and its ability to produce enzymatically hydrolysable substrates. Furthermore, the study explored the fundamental characteristics of pretreated B. davidii in the context of developing an efficient bioconversion of cellulose to glucose. The presence of high lignin and hemicellulose contents in B. davidii wood was not found to be a negative factor since these biopolymers were easily removed during ethanol organosolv pretreatment (EOP). It was also concluded that the removal of hemicellulose, delignification, reduction in DP of cellulose, and the conversion of crystalline cellulose dimorphs (Ialpha/Ibeta) to the easily degradable para-crystalline and amorphous celluloses were the characteristics accounted for efficient enzymatic deconstruction of B. davidii after EOP.;The third study provides a detailed elucidation of the chemical structure of ethanol organosolv lignin (EOL) of B. davidii by NMR spectroscopy and compares the data to that of the native (untreated) lignin. Such research was needed to understand the pretreatment mechanism in the context of delignification and alteration of the lignin structure. Future applications of the resulted EOL will be valuable for industrially viable bioethanol production process. EOP mainly cleaved beta-O-4' interlinkages via homolysis, decreased the DP of lignin, and increased the degree of condensation of lignin. EOL had low oxygen content, molecular weight, and aliphatic OH as well as high phenolic OH, which are qualities that make it suitable for different co-product applications.;The last study provides information on the anatomical characteristics of pretreated B. davidii biomass after EOP. The importance of this research was to further understand the alterations that occur to the cellular structure of the biomass which can then be correlated with its enzymatic digestibility. The results concluded that the physical distribution of lignin within the biomass matrix after pretreatment, and the partial removal of middle lamella lignin were key factors influencing enzymatic hydrolysis.
机译:生物乙醇正成为化石燃料的主要替代品之一,并由玉米和甘蔗商业化生产。由于木质纤维素生物乙醇不涉及“燃料或食物”问题,因此目前正在研究木质纤维素生物乙醇作为玉米/蔗糖烷乙醇的替代物。正在研究许多生物质资源,但重要的是找到具有有吸引力的农业能源特征的生物质资源。因此,总是有必要扩大生物资源基础。另外,纤维素乙醇的生产比玉米/蔗糖烷乙醇的生产更具挑战性,因为生物质能抵抗化学和生物降解。为了减少生物质的顽固性,需要预处理步骤,但这是纤维素乙醇生产中最密集的操作/操作成本组成部分。因此,研究主要集中在了解预处理技术对木质纤维素生物质基本特征的影响。本论文的第一项研究调查了醉鱼草作为生物乙醇生产的潜在生物质来源。这项工作着重于测定该植物中的灰分,提取物,木质素,半纤维素和纤维素含量,以及通过NMR光谱详细阐明木质素和纤维素的化学结构。大卫氏芽孢杆菌具有多种独特的农业能源特征,从分布范围和广泛的生长栖息地到其组成方面(纤维素DP为100),还有一些不良特性,例如相对较高的木质素(30%)和半纤维素。含量(34%),低纤维素含量(35%)和高纤维素结晶度指数(0.55)。为确定这些正负因素对潜在葡萄糖产量的平衡,评估和分析了B. davidii的酶促水解行为。需要。第二项研究提出了对大卫氏芽孢杆菌的乙醇有机溶剂预处理及其产生酶可水解底物的能力的研究。此外,在开发纤维素到葡萄糖的有效生物转化的背景下,该研究探索了预处理的大卫氏芽孢杆菌的基本特征。没有发现在芽孢杆菌木材中木质素和半纤维素含量高是不利因素,因为这些生物聚合物在乙醇有机溶剂预处理(EOP)期间很容易被除去。还得出结论,半纤维素的去除,去木质素作用,纤维素DP的减少以及结晶纤维素双晶型物(Ialpha / Ibeta)转化为易降解的对晶和无定形纤维素的特征是B高效酶解的特征。在第三次研究中,通过NMR光谱详细阐明了大卫氏芽孢杆菌的乙醇有机溶剂木质素(EOL)的化学结构,并将数据与天然(未经处理的)木质素进行了比较。需要进行此类研究以了解木质素结构脱木素化和改变背景下的预处理机理。最终EOL的未来应用将对工业上可行的生物乙醇生产工艺具有重要的价值。 EOP主要通过均裂作用裂解β-O-4'的相互连接,降低木质素的DP,并增加木质素的缩合度。 EOL具有低的氧含量,分子量,脂肪族OH和高酚型OH,这些特性使其适合不同的副产品应用;最后的研究提供了有关预处理的大卫氏双歧杆菌生物质在解剖后的解剖学特征的信息。 EOP。这项研究的重要性是进一步了解生物质细胞结构发生的变化,然后将其与其酶消化率相关联。结果表明,预处理后木质素在生物质基质中的物理分布以及中间层木质素的部分去除是影响酶促水解的关键因素。

著录项

  • 作者

    Hallac, Bassem Bishara.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Chemistry Organic.;Agriculture Wood Technology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号