首页> 外文学位 >Development of a Freight Generation Model through Linear Regression: An Application to California.
【24h】

Development of a Freight Generation Model through Linear Regression: An Application to California.

机译:通过线性回归开发货运量模型:在加利福尼亚的应用。

获取原文
获取原文并翻译 | 示例

摘要

The growth in demand for freight transportation prompts the need to develop better tools to evaluate and analyze the goods movement system. Tools such as a freight generation model can improve decision-making through the analysis of the types and quantity of goods moved from one point to another. This thesis' model building process involves the disaggregation of the Federal Highway Administration's Freight Analysis Framework database on freight origin-destination data and the development of linear regression equations to describe the relationships between commodity outputs (productions/attractions) to specific economic variables. Several freight generation models are presented and "validated" for California with actual 2007-year data and applied to predict 2015 commodity outputs. The models are distinguished from one another by the different groupings of commodities that are evaluated. Instead of generating a production/attraction equation for each commodity, the grouping of commodities can simplify model development and application. Commodity equations with high R2 values were more likely to generate outputs closer to the actual 2007 data in the calibration process. Because model output results are highly dependent on grouping configurations, this study does not provide a recommendation on which model is "better". Due to economic and geographic differences among the nation's 50 states, one set of production/attraction equations cannot accurately predict tonnage outputs for every region. This study can be used as a guideline for city, county, metropolitan and state level planning agencies to develop their own customized freight generation model.
机译:货运需求的增长促使需要开发更好的工具来评估和分析货物运输系统。诸如货运量生成模型之类的工具可以通过分析从一个点移动到另一个点的货物的类型和数量来改善决策。本文的模型构建过程涉及联邦公路管理局的“货运分析框架”数据库对货运起点-目的地数据的分解,以及线性回归方程的开发,以描述商品产出(生产/吸引力)与特定经济变量之间的关系。介绍了几种货运模型,并使用2007年的实际数据对“加利福尼亚”进行了“验证”,并将其用于预测2015年的商品产量。这些模型之间的区别在于所评估商品的不同分组。代替为每个商品生成生产/吸引方程,商品的分组可以简化模型的开发和应用。在校准过程中,具有较高R2值的商品方程更有可能产生接近于2007年实际数据的输出。由于模型输出结果高度依赖于分组配置,因此本研究未提供关于哪种模型“更好”的建议。由于美国50个州之间的经济和地理差异,一套生产/吸引力方程无法准确预测每个地区的吨位产量。该研究可以用作市,县,市和州级规划机构开发自己的定制货运产生模型的指南。

著录项

  • 作者

    Lim, Robert Ming.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Civil.;Transportation.
  • 学位 M.S.
  • 年度 2011
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号