首页> 外文学位 >Graph-based decoders and divergence-rate estimators for data-hiding problems.
【24h】

Graph-based decoders and divergence-rate estimators for data-hiding problems.

机译:用于数据隐藏问题的基于图的解码器和发散率估计器。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we look closely at two fundamental problems that arise within the context of multimedia blind watermark decoding and timing channels steganalysis. The central problem considered, loosely speaking, is that of implementing optimal (or near-optimal) strategies at the receiver, which is typically tasked to perform reliable decoding or detection, depending on the application at hand, in the presence of numerous unavoidable statistical uncertainties that are rather unique to the problem setup. A typical question we will be asking is, "Can we perform reliable decoding of hidden data in spite of the presence of unknown channel parameters?" or "How best can we detect presence of hidden data with unknown, and rather arbitrary, host and observation statistics?" While such questions are naturally relevant from a practical viewpoint, we draw additional inspiration for our study from profound theoretical insights arising from our recent research.;As our solution to the first problem, we propose a new paradigm for blind watermark decoding in the presence of various signal distortion operations. Employing Forney-style factor graphs to model the watermarking system, we cast the blind watermark decoding problem as a probabilistic inference problem on a graph, and solve it via messagepassing. We study a wide range of moderate to strong distortions including scaling, amplitude modulation, fractional shift, arbitrary linear and shift invariant (LSI) filtering, and blockwise filtering, and show that the graph-based iterative decoders perform almost as well as if they had exact knowledge of the distortion channel parameters. Other desirable features of the graph-based decoders include the flexibility to adapt to other types of distortions and the ability to cope with the "curse of dimensionality" problem that seemingly results when the distortion channel parameters' space has high dimensionality. These properties are unlike most blind watermark decoders proposed to date, and close an important computational gap in favor of deploying joint estimation-decoding strategies (shown to be theoretically optimal in our earlier work) to cope with common signal distortions.;For the second problem, we propose new tools for steganalysis of queuebased stegocodes over covert timing channels. We propose a universal estimator for the Kullback-Leibler (KL) divergence-rate between the covertext process and the stegotext process. We empirically illustrate the performance of our estimator on some simple queue-based stegocodes and study its convergence properties.
机译:在本文中,我们仔细研究了在多媒体盲水印解码和定时信道隐写分析的背景下出现的两个基本问题。松散地说,所考虑的中心问题是在接收机处实现最佳(或接近最佳)策略的问题,这通常是根据手头的应用在存在许多不可避免的统计不确定性的情况下执行可靠的解码或检测的任务这是问题设置所特有的。我们将要问的一个典型问题是:“尽管存在未知的信道参数,我们仍可以对隐藏数据进行可靠的解码吗?”或“我们如何才能最好地检测出具有未知且相当随意的主机和观测统计数据的隐藏数据?”虽然从实践的角度来看这些问题自然是相关的,但是我们从最近的研究中获得的深刻理论见解为我们的研究提供了更多启发。各种信号失真操作。利用Forney风格的因子图对水印系统进行建模,我们将盲水印解码问题作为概率推理问题投射到图上,并通过消息传递进行解决。我们研究了各种中度到强度失真,包括缩放,幅度调制,分数位移,任意线性和位移不变(LSI)滤波以及逐块滤波,并表明基于图的迭代解码器的性能几乎与失真通道参数的确切知识。基于图的解码器的其他期望特征包括适应其他类型的失真的灵活性,以及​​应付似乎在失真信道参数的空间具有高维度时出现的“维度诅咒”问题的能力。这些特性不同于迄今提出的大多数盲水印解码器,并弥合了重要的计算鸿沟,有利于部署联合估计-解码策略(在我们较早的工作中在理论上显示为最佳)以应对常见的信号失真。 ,我们提出了用于隐蔽定时通道上基于队列的隐身代码进行隐身分析的新工具。我们为覆盖文本过程和隐写文本过程之间的Kullback-Leibler(KL)差异率提出了一个通用估计器。我们在一些简单的基于队列的隐身代码上经验地说明了估计器的性能,并研究了其收敛性。

著录项

  • 作者

    Sadasivam, Shankar.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号