首页> 外文学位 >The mathematical structure of quantum control landscapes.
【24h】

The mathematical structure of quantum control landscapes.

机译:量子控制态的数学结构。

获取原文
获取原文并翻译 | 示例

摘要

Quantum control typically deals with the interaction of an external field with a quantum system, with the goal of bringing about desired behavior at the atomic or molecular level. Closed-loop algorithms in the laboratory have been surprisingly successful at discovering optimal controls for a variety of applications. However, questions persist concerning the physical and mathematical relationships among the system, control, and the controlled dynamics. Many of these questions are best addressed through analysis of the control landscapes, i.e. objective functions on control space.;Prior work on the structure of quantum control landscapes showed that (away from singular controls) the studied landscapes have global extrema and saddle points, but no suboptimal extrema that can act as "traps" for the gradient flow. That work also high-lighted the vast multiplicity of distinct controls at every level of the landscape, including the optimal value. This dissertation presents new results that further elucidate the mathematical structure of quantum control landscapes and the physical and algorithmic implications these features hold.;First, a numerical method is presented for exploring the multiplicity of controls yielding a target final-time unitary evolution operator, the general solution of the Schrodinger equation. This tool is used to explore the role of the final time T in quantum control. Next, several families of landscapes are considered for the generation of target unitary transformations, which are important in quantum computing. The critical point structures of the landscapes are analyzed, yielding important information about the associated gradient flows. Following this, a dynamic homotopy theory is presented, revealing the global topological structure of level sets and other "dynamical" sets in the space of controls. This global structure has implications for understanding and designing quantum control algorithms, as well as the physical mechanism of control. Finally, the role of the many saddles in quantum control landscapes is evaluated by estimating and bounding the volume fraction of the halo of near-critical points (those with small gradient) surrounding each saddle. This volume fraction is interpreted as the probability of lying in these flat regions where the gradient flow and other optimal control methods can become inefficient.
机译:量子控制通常处理外部场与量子系统的相互作用,目的是在原子或分子水平上实现所需的行为。实验室中的闭环算法在发现各种应用的最佳控制方面取得了令人惊讶的成功。但是,仍然存在有关系统,控制和受控动力学之间的物理和数学关系的问题。这些问题中的许多问题都可以通过对控制景观的分析(即控制空间上的目标函数)来最好地解决。;关于量子控制景观的结构的先前工作表明,所研究的景观(除了奇异控制之外)具有全局极值和鞍点,但是没有最理想的极值可以充当梯度流的“陷阱”。这项工作还凸显了景观各个层次上各种控件的多样性,包括最佳值。本文提出了新的结果,进一步阐明了量子控制态的数学结构以及这些特征所具有的物理和算法含义。首先,提出了一种数值方法来探索控制的多重性,从而产生目标最终时间unit演化算子。薛定inger方程的一般解。该工具用于探索最终时间T在量子控制中的作用。接下来,考虑使用几类景观来生成目标单一变换,这在量子计算中很重要。分析了景观的临界点结构,得出了有关梯度流的重要信息。在此之后,提出了动态同伦理论,揭示了控制空间中水平集和其他“动态”集的全局拓扑结构。这种全局结构对于理解和设计量子控制算法以及物理控制机制具有重要意义。最后,通过估计和限制围绕每个鞍形的近临界点(斜率较小的点)的光晕的体积分数,来评估许多鞍形在量子控制领域中的作用。将该体积分数解释为位于这些平坦区域中的可能性,在这些平坦区域中,梯度流和其他最佳控制方法可能会变得无效。

著录项

  • 作者

    Dominy, Jason M.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号