首页> 外文学位 >Design and modeling of high-speed clock and data recovery circuits.
【24h】

Design and modeling of high-speed clock and data recovery circuits.

机译:高速时钟和数据恢复电路的设计和建模。

获取原文
获取原文并翻译 | 示例

摘要

The rapid increase in the demand for broadband data communication systems has motivated extensive research on higher-speed, higher-integrated solutions with lower cost and lower power consumption. This research deals with architecture and circuit design as well as theoretical modeling for such applications.; First, we propose an analysis of regenerative dividers that predicts the required phase shift or selectivity for proper operation. A divider topology is introduced that employs resonance techniques by means of on-chip spiral inductors to tune out the device capacitances. Configured as two cascaded ÷2 stages, the circuit achieves a frequency range of 2.3 GHz at 40 GHz while consuming 31 mW from a 2.5-V supply.; Next, we present a 40-Gb/s phase-locked clock and data recovery circuit incorporating a multiphase LC oscillator and a quarter-rate bang-bang phase detector. The oscillator is based on differential excitation of a closed-loop transmission line at evenly-spaced points, providing half-quadrature phases. The phase detector employs eight flipflops to sample the input every 12.5 ps, detecting data transitions while retiming and demultiplexing the data into four 10-Gb/s outputs. Fabricated in 0.18-mum CMOS technology, the circuit produces a clock jitter of 0.9 psrms and 9.67 pspp with a PRBS of 2 31 - 1 while consuming 144 mW from a 2-V supply.; Finally, a large-signal piecewise-linear model is proposed for bang-bang phase detectors that predicts such characteristics of clock and data recovery circuits as jitter transfer, jitter tolerance, jitter generation, bit error rate, and capture range. The results are validated by 1-Gb/s and 10-Gb/s CMOS prototypes using an Alexander phase detector and an LC oscillator.
机译:宽带数据通信系统需求的快速增长促使人们对具有更低成本和更低功耗的更高速度,更高集成度的解决方案进行了广泛的研究。该研究涉及此类应用的架构和电路设计以及理论建模。首先,我们提出了一种可再生除法器的分析方法,该方法可预测所需的相移或选择性,以使其正常运行。引入了分频器拓扑,该分频器拓扑通过片上螺旋电感器采用谐振技术来调出器件电容。配置为两个÷2级,该电路在40 GHz时达到2.3 GHz的频率范围,而从2.5V电源消耗的功率为31 mW。接下来,我们介绍了一个40 Gb / s锁相时钟和数据恢复电路,其中包含一个多相LC振荡器和一个四分之一速率的bang-bang相位检测器。该振荡器基于在均匀间隔的点上闭环传输线的差分激励,从而提供半正交相位。鉴相器采用八个触发器每12.5 ps采样一次输入,检测数据转换,同时将数据重新定时和多路分解为四个10 Gb / s输出。该电路采用0.18微米CMOS技术制造,产生0.9 psrms和9.67 pspp的时钟抖动,PRBS为2 31-1,而2 V电源消耗144 mW。最后,针对爆炸式相位检测器,提出了一个大信号分段线性模型,该模型可预测时钟和数据恢复电路的特性,如抖动传输,抖动容限,抖动生成,误码率和捕获范围。使用Alexander鉴相器和LC振荡器的1-Gb / s和10-Gb / s CMOS原型验证了结果。

著录项

  • 作者

    Lee, Jri.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 80 p.
  • 总页数 80
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号