首页> 外文学位 >A Comparison of the Performance of Neural Q-learning and Soar-RL on a Derivative of the Block Design (BD)/Block Design Multiple Choice (BDMC) Subtests on the WISC-IV Intelligence Test.
【24h】

A Comparison of the Performance of Neural Q-learning and Soar-RL on a Derivative of the Block Design (BD)/Block Design Multiple Choice (BDMC) Subtests on the WISC-IV Intelligence Test.

机译:在WISC-IV智力测验的区块设计(BD)/区块设计多项选择(BDMC)子测验的衍生物上,神经Q学习和Soar-RL的性能比较。

获取原文
获取原文并翻译 | 示例

摘要

Teaching an autonomous agent to perform tasks that are simple to humans can be complex, especially when the task requires successive steps, has a low likelihood of successful completion with a brute force approach, and when the solution space is too large or too complex to be explicitly encoded. Reinforcement learning algorithms are particularly suited to such situations, and are based on rewards that help the agent to find the optimal action to execute given a certain state. The task investigated in this thesis is a modified form of the Block Design (BD) and Block Design Multiple Choice (BDMC) subtests, used by the Fourth Edition of the Wechsler Intelligence Scale for Children (WISC-IV) to partially assess childrens' learning abilities. This thesis investigates the implementation, training, and performance of two reinforcement learning architectures for this problem: Soar-RL, a production system capable of reinforcement learning, and a Q-learning neural network. The objective is to help define the advantages and disadvantages of solving problems using these architectures. This thesis will show that Soar is intuitive for implementation and is able to find an optimal policy, although it is limited by its execution of exploratory actions. The neural network is also able to find an optimal policy and outperforms Soar, but the convergence of the solution is highly dependent on the architecture of the neural network.
机译:教给自治代理执行对人类而言简单的任务可能会很复杂,尤其是当任务需要连续的步骤,使用蛮力方法成功完成的可能性很小,解决方案空间太大或太复杂而无法解决时明确编码。强化学习算法特别适合于这种情况,并且基于奖励,奖励可帮助代理找到在给定状态下执行的最佳动作。本文研究的任务是“块体设计”(BD)和“块体设计多项选择”(BDMC)子测验的一种修改形式,由第四版《韦氏儿童智能量表》(WISC-IV)用于部分评估儿童的学习情况能力。本文研究了针对此问题的两种强化学习体系结构的实施,培训和性能:Soar-RL,能够强化学习的生产系统和Q学习神经网络。目的是帮助定义使用这些体系结构解决问题的优缺点。本论文将表明,Soar实施起来很直观,并且能够找到最佳策略,尽管它受到执行探索性行为的限制。神经网络也能够找到最佳策略并胜过Soar,但是解决方案的收敛高度依赖于神经网络的体系结构。

著录项

  • 作者

    Bell, Charreau Sieanna.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Computer.;Computer Science.;Psychology Psychometrics.
  • 学位 M.S.
  • 年度 2011
  • 页码 69 p.
  • 总页数 69
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号