首页> 外文学位 >Exact and heuristic algorithms for the Euclidean Steiner tree problem.
【24h】

Exact and heuristic algorithms for the Euclidean Steiner tree problem.

机译:欧氏Steiner树问题的精确和启发式算法。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we study the Euclidean Steiner tree problem (ESTP) which arises in the field of combinatorial optimization. The ESTP asks for a network of minimal total edge length spanning a set of given terminal points in minimal total edge length spanning a set of given terminal points in reals d with the ability to add auxiliary connecting points (Steiner points) to decrease the overall length of the network. The graph theory literature contains extensive studies of exact, approximation, and heuristic algorithms for ESTP in the plane, but less is known in higher dimensions. The contributions of this thesis include a heuristic algorithm and enhancements to an exact algorithm for solving the ESTP.;We present a local search heuristic for the ESTP in We present a local search heuristic for the ESTP in realsd for d ≥ 2. The algorithm utilizes the Delaunay triangulation to generate candidate Steiner points for insertion, the minimum spanning tree to create a network on the inserted points, and second order cone programming to optimize the locations of Steiner points. Unlike other ESTP heuristics relying on the Delaunay triangulation, the algorithm inserts Steiner points probabilistically into Delaunay triangles to achieve different subtrees on subsets of terminal points. The algorithm extends effectively into higher dimensions, and we present computational results on benchmark test problems inrealsd 2 ≤ d ≤ 5.;We develop new geometric conditions derived from properties of Steiner trees which bound below the number of Steiner points on paths between terminals in the Steiner minimal tree. We describe conditions for trees with a Steiner topology and show how these conditions relate to the Voronoi diagram. We describe more restrictive conditions for trees with a full Steiner topology and their implementation into the algorithm of Smith (1992). We present computational results on benchmark test problems realsd for 2 ≤ d ≤ 5.
机译:在本文中,我们研究了组合优化领域中出现的欧氏Steiner树问题(ESTP)。 ESTP要求网络的最小总边长跨过一组给定的终端点,而最小的总边长跨过实数的一组给定的终端点,并具有添加辅助连接点(Steiner点)以减少总长度的能力网络。图论文献包含有关平面内ESTP的精确,逼近和启发式算法的广泛研究,但在较高维度中知之甚少。本文的贡献包括启发式算法和对求解ESTP的精确算法的增强。;我们在中给出了ESTP的局部搜索启发式。在d≥2的情况下,我们给出了ESTP的局部搜索启发式。 Delaunay三角剖分生成候选的Steiner点进行插入,最小生成树在插入的点上创建网络,以及二阶锥规划以优化Steiner点的位置。与其他依赖Delaunay三角剖分的ESTP启发式算法不同,该算法将Steiner点概率性地插入Delaunay三角形中,以在终端子集上获得不同的子树。该算法有效地扩展到了更高的维度,并且我们给出了基准测试问题inrealsd 2≤d≤5的计算结果;我们开发了从Steiner树的属性导出的新几何条件,该条件限制在节点之间路径上的Steiner点数以下。斯坦纳最小的树。我们用Steiner拓扑描述树木的条件,并显示这些条件与Voronoi图的关系。我们描述了具有完全Steiner拓扑的树的更多限制性条件,以及它们在Smith(1992)算法中的实现。我们给出了2≤d≤5的基准测试问题realsd的计算结果。

著录项

  • 作者

    Van Laarhoven, Jon William.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Applied Mathematics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号