首页> 外文学位 >Development and application of Liquid Chromatography -- Mass Spectrometry metabolomics towards quantitative dissection of fermentative metabolism and biofuel production in Synechococcus sp. PCC 7002.
【24h】

Development and application of Liquid Chromatography -- Mass Spectrometry metabolomics towards quantitative dissection of fermentative metabolism and biofuel production in Synechococcus sp. PCC 7002.

机译:液相色谱法的开发和应用-质谱代谢组学,用于定量分离Synechococcus sp。的发酵代谢和生物燃料生产。 PCC 7002。

获取原文
获取原文并翻译 | 示例

摘要

Recent demand for renewable and sustainable forms of portable chemical energy have led to renewed interest in and development of Aquatic Microbial Oxygenic Photosynthetic organisms (AMOPs) as platforms for biofuel production. The potential use of AMOPs in "cell factory" applications, in which biofuels or fuel precursors are excreted from cells without the need to destructively harvest the biomass is particularly appealing. We have examined existing analyses of the energy efficiency and net greenhouse gas release of AMOP fuel production, developed a fair comparison of these studies, and provided revised projections of and targets for improvement of the AMOP fuel process chain. We have developed and optimized a targeted LC-MS2 analytical method to monitor the intracellular metabolome of the model marine cyanobacterial AMOP Synechococcus sp. PCC 7002 under fuel-producing conditions. We have applied this methodology to characterize and identify bottlenecks in auto-fermentation, analyzing the wild-type strain alongside several genetic and environmental perturbations. We have gained insight into the limitations of fermentative metabolism in this organism and identified key targets for enhancement of the rate and yield of the production of biofuels such as hydrogen.;In Chapter One, we describe a meta-analysis of several recent Life Cycle Analysis (LCA) studies in which the net energy efficiency and Global Warming Potential (GWP) of AMOP biofuels are estimated. We have developed holistic models of Destructive Harvesting and Milking approaches to fuel production and performed a direct comparison of the values and assumptions employed by the various studies. We subsequently put forth new meta-data based scenarios for both models and report net positive energy production and GHG mitigation potential in the majority of cases. Lastly, we see fewer barriers towards enhanced efficiency in the Milking model alongside greater potential for long-term viability in the wake of probable responses to global climate change.;In Chapter Two, we report the development of a method for the chemical isolation and tandem Liquid Chromatography -- Mass Spectrometry (LC-MS 2) quantification of a targeted subset of internal metabolites from Synechococcus, a model marine cyanobacterium capable of producing valuable products such as lactate, acetate, and hydrogen. We describe the selection of target compounds, requirements for and optimization of mass spectral detection channels, screening and optimization of chromatography, and development of a complete, rapid, and stable sampling protocol. We identify and resolve several key factors influencing the separation by reversed-phase ion pairing (RIP) chromatography, specifically the hydrophobicity of the sample matrix and sensitivity to mobile phase acidity. We apply this methodology to an initial analysis of auto-fermentative metabolism in Synechococcus, for which intracellular levels of 25 metabolites were monitored over 48 hours, including intermediates in central carbon metabolism together with those involved in the cellular energy charge and redox poise. Upon removal the alternative reductant sink nitrate, auto-fermentation induces a rise in the intracellular pyridine nucleotide redox poise that is specific to NAD(H) alongside a gradual decline in the adenylate energy charge, corroborating previous observations using alternative methods of analysis.;In Chapter three, this LC-MS2 method is applied to analyze the primary constraints on auto-fermentative metabolism in Synechococcus , a "cell factory" state in which terminal products are excreted from the cell and into the environment. The time-dependent changes in intracellular intermediates point to a primary bottleneck at GAPDH (1.2.1.12), the sole nucleotide reduction step in the Embden Meyerhof Parnas (EMP) pathway, corroborated by the measured rise in intracellular NADH and concomitant drop in NAD+. A disequilibrium between these and the NADP(H) pools indicates low transhydrogenase activity, supported by transcriptional and biochemical data. Oxidant specificity during auto-fermentation is demonstrated by a shift in catabolism from the EMP to the oxidative pentose phosphate (OPP) pathway in the presence of the NADPH-specific reductant sink nitrate. Global changes in central carbon metabolism and affiliated energy carriers in the presence of glycerol provide evidence of increased upper glycolytic backup and activation of the alternate OPP pathway. Lastly, an overlay of cDNA sequencing-based transcriptional data onto the metabolomic model suggests that gene expression of EMP enzymes exacerbates the constraint of auto-fermentative flux at GAPDH. These results highlight crucial targets for increasing the rate of carbohydrate catabolism towards the "overnight" target needed for biofuel application and improving the yields of valuable fermentative products, such as H2, ethanol, and lactate.
机译:对可再生和可持续形式的便携式化学能的最新需求已引起人们对作为生物燃料生产平台的水生微生物产氧光合生物(AMOP)的兴趣和发展。 AMOP在“细胞工厂”应用中的潜在用途尤其吸引人,在这种应用中,生物燃料或燃料前体从细胞中排出,而无需破坏性地收获生物质。我们检查了AMOP燃料生产的能源效率和温室气体净排放量的现有分析,对这些研究进行了公平的比较,并提供了AMOP燃料工艺链的修订预测和目标。我们已经开发并优化了靶向LC-MS2分析方法,以监测模型海洋蓝细菌AMOP Synechococcus sp。的细胞内代谢组。 PCC 7002在燃料生产条件下。我们已经应用了这种方法来表征和识别自动发酵的瓶颈,分析野生型菌株以及几种遗传和环境干扰。我们已经了解了这种生物中发酵代谢的局限性,并确定了提高诸如氢之类的生物燃料生产的速率和产量的关键目标。在第一章中,我们描述了对近期几种生命周期分析的荟萃分析。 (LCA)研究,其中估算了AMOP生物燃料的净能效和全球变暖潜能(GWP)。我们已经开发了破坏性收获和挤奶方法来生产燃料的整体模型,并对各种研究采用的价值和假设进行了直接比较。随后,我们针对两种模型提出了新的基于元数据的方案,并在大多数情况下报告了净正能量生产和温室气体减排潜力。最后,在对全球气候变化的可能响应之后,我们发现挤奶模型中提高效率的障碍越来越少,而长期生存的潜力也更大。在第二章中,我们报告了化学分离和串联方法的发展液相色谱-质谱(LC-MS 2)对来自Synechococcus的内部代谢产物的目标子集进行定量分析,Synechococcus是一种模型海洋蓝细菌,能够产生有价值的产物,例如乳酸,乙酸盐和氢气。我们描述了目标化合物的选择,质谱检测通道的要求和优化,色谱的筛选和优化以及完整,快速和稳定的采样方案的开发。我们确定并解决了影响反相离子对(RIP)色谱分离的几个关键因素,特别是样品基质的疏水性和对流动相酸性的敏感性。我们将此方法应用于Synechococcus中的自动发酵代谢的初步分析,其在48小时内监测了25种代谢产物的细胞内水平,包括中心碳代谢的中间体以及涉及细胞能量电荷和氧化还原平衡的中间体。除去替代的还原剂汇硝酸盐后,自动发酵诱导了NAD(H)特异的胞内吡啶核苷酸氧化还原平衡的升高,同时腺苷酸能电荷的逐渐降低,从而证实了使用替代分析方法的先前观察结果。第三章,该LC-MS2方法用于分析Synechococcus中自动发酵代谢的主要限制条件,Synechococcus是一种“细胞工厂”状态,其中最终产物从细胞中排泄到环境中。细胞内中间体的时间依赖性变化指向GAPDH(1.2.1.12)的主要瓶颈,这是Embden Meyerhof Parnas(EMP)途径中唯一的核苷酸还原步骤,这与所测得的细胞内NADH上升和NAD +下降有关。这些和NADP(H)库之间的不平衡表明转录和生物化学数据支持低的转氢酶活性。在NADPH特异性还原剂汇硝酸盐存在下,分解代谢从EMP转变为氧化戊糖磷酸(OPP)途径证明了自动发酵过程中的氧化剂特异性。在甘油存在下,中央碳代谢和相关能量载体的总体变化提供了增加的上部糖酵解备用和替代OPP途径激活的证据。最后,将基于cDNA测序的转录数据叠加到代谢组学模型上,表明EMP酶的基因表达加剧了GAPDH自身发酵通量的限制。这些结果突出了将碳水化合物分解代谢的速率提高到生物燃料应用所需的“过夜”目标并提高有价值的发酵产品(例如H2,乙醇和乳酸)的产量的关键目标。

著录项

  • 作者

    Bennette, Nicholas Benoit.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Biology Microbiology.;Chemistry Analytical.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号