首页> 外文学位 >Cellular aggregation, platelet activation andvon Willebrand factor self-association under hydrodynamic flow.
【24h】

Cellular aggregation, platelet activation andvon Willebrand factor self-association under hydrodynamic flow.

机译:流体动力流动下的细胞聚集,血小板活化和von Willebrand因子自缔合。

获取原文
获取原文并翻译 | 示例

摘要

Blood flow plays an important role in regulating cellular activation and aggregation rates in circulation. In this thesis, the mechanisms of cellular aggregation and shear-induced platelet activation (SIPAct) are studied by applying fluid shear to cell suspensions in a cone-plate viscometer.; Firstly, we performed a theoretical analysis of fluid flow and particle interactions in the cone-plate viscometer. At high shear rates, centrifugal forces at the cone surface induce non-linear secondary flow in this device. Our analysis indicates that secondary flow causes positional variations in intercellular collision frequency and adhesion efficiency in the viscometer. In addition, the adhesion efficiency is dependent not only on the shear rate, but also the sample volume and the cone angle. Experiments performed with isolated neutrophils confirmed these predictions. The results suggest that secondary flow may significantly influence biological experiments in the viscometer.; Next, we quantitatively examined the aspects of fluid flow that regulate SIPAct using the viscometer. We observed that a threshold shear stress of ∼80dyn/cm 2 is necessary to induce platelet activation. Results also reveal a two-step mechanism for SIPAct: Fluid shear and von Willebrand factor (vWF) are required in the first step where binding between the platelet GpIb and vWF likely occurs. Subsequently, high shear forces alone in the absence of vWF in suspension can induce platelet activation.; In other experiments, purified vWF was subjected to shear in the viscometer and vWF morphology was assessed using light scattering. These studies demonstrate the ability of hydrodynamic forces to induce vWF aggregation in suspension. vWF self-association may be an additional feature involved in controlling thrombosis in circulation.; Finally, a mathematical model was developed to compute hydrodynamic forces applied on intercellular aggregates, cell-surface receptors and soluble molecules. Calculations reveal that: (i) The force applied on neutrophil-platelet doublets is ∼3-fold lower than that on neutrophil-neutrophil doublets. Thus, alterations in cell size may dramatically alter adhesion molecule requirement for efficient cell binding. (ii) Forces on platelet GpIb and vWF are of comparable magnitude, but are orders of magnitude lower than those applied on cell doublets. The calculation scheme may find application in studies of vascular biology and receptor biophysics.
机译:血流在调节循环中的细胞活化和聚集速率中起重要作用。本文通过对锥板粘度计中的细胞悬浮液进行流体剪切研究了细胞聚集和剪切诱导的血小板活化的机制。首先,我们对锥板粘度计中的流体流动和颗粒相互作用进行了理论分析。在高剪切速率下,锥形表面上的离心力会在此设备中引起非线性二次流。我们的分析表明,二次流动会引起粘度计中细胞间碰撞频率和粘附效率的位置变化。另外,粘附效率不仅取决于剪切速率,还取决于样品体积和锥角。用分离的中性粒细胞进行的实验证实了这些预测。结果表明,二次流动可能会显着影响粘度计中的生物学实验。接下来,我们使用粘度计定量研究了调节SIPAct的流体流动方面。我们观察到约80dyn / cm 2 的阈值剪切应力是诱导血小板活化所必需的。结果还揭示了SIPAct的两步机制:第一步可能需要进行流体剪切和von Willebrand因子(vWF),而血小板GpIb和vWF之间可能会发生结合。随后,在悬浮液中不存在vWF的情况下,单独的高剪切力会诱导血小板活化。在其他实验中,纯化的vWF在粘度计上进行剪切,并使用光散射评估vWF形态。这些研究证明了流体动力在悬浮液中诱导vWF聚集的能力。 vWF自缔合可能是控制循环血栓形成的另一个特征。最后,建立了数学模型来计算施加在细胞间聚集体,细胞表面受体和可溶性分子上的流体动力。计算表明:(i)中性粒细胞-血小板二重峰的作用力比中性粒细胞-中性粒细胞二重峰的作用力低约3倍。因此,细胞大小的改变可显着改变粘附分子对有效细胞结合的需求。 (ii)血小板GpIb和vWF的作用力具有可比的大小,但比细胞双重作用下的作用力低几个数量级。该计算方案可以在血管生物学和受体生物物理学的研究中找到应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号