首页> 外文学位 >Monitoring Structure-Function Relationships in Donor-Acceptor Systems for Electron Transfer.
【24h】

Monitoring Structure-Function Relationships in Donor-Acceptor Systems for Electron Transfer.

机译:监测电子转移的供体-受体系统中的结构-功能关系。

获取原文
获取原文并翻译 | 示例

摘要

The work in this thesis is aimed at gaining a better understanding of the structure-function relationships that exist in artificial electron transfer systems. The systems under investigation range from DNA to linear D-A systems to pi-stacking supramolecular assemblies. Each system was chosen to probe a specific structure-function relationship. The first series of molecules were made to examine the thermodynamic parameters of hole transport through DNA hairpins. The fixed distance between base pairs in DNA makes it an attractive scaffold for studying fundamental electron transfer events. In the second and third series of molecules, electron transfer originating from a strongly coupled charge transfer (CT) state in electron D-A1-A2 systems was examined. The second series focused on using julolidine as a donor because it has a modest oxidation potential and exhibits some conformational rigidity. Attachment of julolidine donor to naphthalene-1,8-dicarboximide (NMI) form a highly dipolar, low energy CT state, from which electron transfer was initiated to terminal electron acceptors. The third series focuses on increasing the structural rigidity of the donor by attaching perylene to NMI and examines the electron transfer dynamics to a secondary acceptor. The final two series focus on increasing the function of D-A1-A2 systems by forming pi-stacked solution-phase assemblies. In the first study, perylene-3,4;9,10-bis(dicarboximide) (PDI) is used to induce formation of solution-phase supramolecular assemblies. The redox potentials of PDI were tuned through bay region substitution, producing a molecule having both a green PDI as well as a standard red PDI. In the final study, PDIs were again used as terminal electron acceptors in a symmetric cruciform system. The cruciform design allows for greater control over the distance between the electron donor, a Zn-porphyrin, and the PDI, in which the two units are oriented 90° to one another. Electron transfer was demonstrated around this 90o bend, forming a long-lived ion pair state.
机译:本文的工作旨在更好地理解人工电子传递系统中存在的结构-功能关系。研究中的系统范围从DNA到线性D-A系统再到π堆积超分子组装。选择每个系统以探究特定的结构-功能关系。制备了第一批分子以检查通过DNA发夹的空穴传输的热力学参数。 DNA中碱基对之间的固定距离使其成为研究基础电子转移事件的诱人支架。在第二和第三系列分子中,检查了电子D-A1-A2系统中源自强耦合电荷转移(CT)状态的电子转移。第二个系列着重于使用聚甲基吡啶作为供体,因为它具有适度的氧化电位并显示出一定的构象刚度。萘洛啶供体与萘-1,8-二甲叉酰亚胺(NMI)的连接形成高度偶极,低能的CT状态,从此状态电子开始转移到末端电子受体。第三个系列着重于通过将per与NMI连接来提高供体的结构刚性,并研究了电子向次级受体的转移动力学。最后两个系列着重于通过形成pi堆叠的溶液相组件来增强D-A1-A2系统的功能。在第一个研究中,per-3,4; 9,10-双(二甲叉酰亚胺)(PDI)用于诱导溶液相超分子组装体的形成。通过海湾区域置换来调节PDI的氧化还原电位,从而产生既具有绿色PDI又具有标准红色PDI的分子。在最终研究中,PDI再次用作对称十字形系统中的末端电子受体。十字形设计可以更好地控制电子供体,Zn-卟啉和PDI之间的距离,其中两个单元相互定向90°。在这个90o弯曲处证明了电子转移,形成了长寿命的离子对状态。

著录项

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号