首页> 外文学位 >Inhibition of cytokine signaling in pancreatic beta-cells: Mechanisms of PPAR-gamma agonists.
【24h】

Inhibition of cytokine signaling in pancreatic beta-cells: Mechanisms of PPAR-gamma agonists.

机译:胰腺β细胞中细胞因子信号传导的抑制:PPAR-γ激动剂的机制。

获取原文
获取原文并翻译 | 示例

摘要

Autoimmune diabetes is characterized by the selective destruction of insulin-secreting beta-cells found within the pancreatic islets of Langerhans. The ability of beta-cells to release insulin in a glucose-responsive manner is essential to maintain whole body glucose homeostasis, and in the face of beta-cell death, patients with autoimmune diabetes must inject exogenous insulin for survival. The onset of diabetes is precipitated by insulitis and infiltration of inflammatory cells such as macrophages, T and B lymphocytes, and natural killer cells into the islets. Cytokines produced by these effector cells, specifically macrophage-derived interleukin (IL)-1 and T cell-derived interferon (IFN)-gamma, can bind directly to beta-cells to induce cellular dysfunction and ultimately cell death. IL-1 and IFN-gamma stimulate signaling pathways that culminate in the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) by beta-cells. NO mediates beta-cell dysfunction and degeneration in response to cytokines, in part, by inhibiting oxidative metabolism and inducing DNA damage.; The goal of these studies was to identify mechanisms that protect beta-cells from cytokine-mediated damage. In an effort to address these goals, we have identified peroxisome proliferator activated receptor (PPAR)-gamma ligands as one class of small molecules that inhibit cytokine signaling in beta-cells. We show that PPAR-gamma ligands prevent IL-1-stimulated nuclear factor (NF)-kB activation and IFN-gamma-stimulated signal transducers and activators of transcription (STAT)-1 activation in a time-dependent manner, and that the inhibition of IL-1 and IFN-gamma signaling correlates with expression of the stress inducible protein hsp 70. The protective actions of PPAR-gamma agonists are not mediated by hsp 70, as antisense depletion does not modulate the ability of these ligands to attenuate cytokine signaling. In addition, the inhibition of cytokine signaling by PPAR-gamma ligands does not require activation of the nuclear receptor PPAR-gamma. One mechanism by which PPAR-gamma ligands appear to inhibit cytokine signaling in beta-cells is by the induction of endoplasmic reticulum (ER) stress or the unfolded protein response (UPR). Evidence is presented demonstrating that PPAR-gamma ligands activate the UPR and that activation of this cellular response pathway renders beta-cells inert to cytokine signaling.
机译:自身免疫性糖尿病的特征是选择性破坏朗格罕氏胰岛中发现的分泌胰岛素的β细胞。 β细胞以葡萄糖反应方式释放胰岛素的能力对于维持全身葡萄糖稳态是必不可少的,面对β细胞死亡,自身免疫性糖尿病患者必须注射外源性胰岛素才能生存。胰岛炎和炎症细胞(如巨噬细胞,T和B淋巴细胞以及自然杀伤细胞)浸入胰岛会加剧糖尿病的发作。这些效应细胞产生的细胞因子,特别是巨噬细胞衍生的白介素(IL)-1和T细胞衍生的干扰素(IFN)-γ,可以直接与β细胞结合,诱导细胞功能障碍,最终导致细胞死亡。 IL-1和IFN-γ刺激信号通路,最终导致诱导型一氧化氮合酶(iNOS)的表达和β细胞产生一氧化氮(NO)。 NO通过部分抑制氧化代谢和诱导DNA损伤来介导针对细胞因子的β细胞功能异常和变性。这些研究的目的是确定保护β细胞免受细胞因子介导的损害的机制。为了实现这些目标,我们已经确定了过氧化物酶体增殖物激活受体(PPAR)-γ配体是抑制β细胞中细胞因子信号传导的一类小分子。我们显示,PPAR-γ配体以时间依赖性方式阻止IL-1刺激的核因子(NF)-kB激活和IFN-γ刺激的信号转导子以及转录激活子(STAT)-1的激活,并且这种抑制作用IL-1和IFN-γ信号转导通路与应激诱导蛋白hsp 70的表达有关。PPAR-γ激动剂的保护作用不受hsp 70介导,因为反义耗竭不会调节这些配体减弱细胞因子信号转导的能力。 。另外,通过PPAR-γ配体抑制细胞因子信号传导不需要激活核受体PPAR-γ。 PPAR-γ配体似乎抑制β细胞中细胞因子信号传导的一种机制是通过诱导内质网(ER)应激或未折叠的蛋白应答(UPR)。提出的证据表明,PPAR-γ配体激活了UPR,并且这种细胞反应途径的激活使β细胞对细胞因子信号呈惰性。

著录项

  • 作者

    Weber, Sarah M.;

  • 作者单位

    Saint Louis University.;

  • 授予单位 Saint Louis University.;
  • 学科 Chemistry Biochemistry.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号