首页> 外文学位 >Mathematical models of ion transport through Nafion membranes in modified electrodes and fuel cells without electroneutrality.
【24h】

Mathematical models of ion transport through Nafion membranes in modified electrodes and fuel cells without electroneutrality.

机译:离子在修饰电极和燃料电池中通过Nafion膜传输的数学模型,没有电子中性。

获取原文
获取原文并翻译 | 示例

摘要

Electrodes modified with polymer films have distinct permeability. Electroactive redox probes partition from solution into film and are electrolyzed at the electrode. This creates a flux of probe into the polymer film and a flux of electrolyzed probe out of the polymer film. Transport of the probe through the film is governed by diffusion and migration, mathematically described by the Nernst-Planck equation as Ji&parl0;x,t&parr0;=-Di6 Ci&parl0;x,t&parr0;6x- ziFRTDiCi &parl0;x,t&parr0;6F&parl0;x,t&parr0; 6x where x is the distance from the electrode, t is time, Ci(x, t) is the space and time dependent concentration of the probe i, zi is the charge of the probe i, F is Faraday's constant, R is the gas constant, T is absolute temperature, J i(x, t) is the flux of the probe i, Di is the diffusion constant of the probe i, and phi(x, t) is the space and time dependent potential.;In most natural systems, charge accumulation is not appreciable and a charged ion is neutralized by a counterion. Electroneutrality is mathematically represented by Laplace's condition on the potential, 62F&parl0;x,t&parr0; 6x2 = 0. In systems where counterions are insufficient to neutralize an ion, local electroneutrality is set by local charge and Poisson's equation replaces Laplace's condition as 62F6x 2=-F3 iziCi&parl0;x,t&parr0; where epsilon is the relative permittivity. The Nernst-Planck under Poisson's condition is not solved analytically. The extreme magnitude of F/epsilon yields a system that resists solution by standard techniques. The first system investigated determines the concentration and potential profiles over the polymer membrane of a fuel cell without the assumption of electroneutrality.;In the second system investigated, the probes physical motion is highly restricted. This gives a more generalized form of the Nernst-Planck equation with spatially varying diffusion coefficient results J=-D&parl0;x,t&parr0;6C&parl0;x,t&parr0; 6x-zFRTD&parl0; x,t&parr0;C&parl0;x,t&parr0;6F&parl0;x, t&parr0;6x. D(x, t) is the space and time dependent diffusion coefficient, which can include a physical displacement term and an electron hopping term. The second system this thesis investigates is a modified electrode system where electron hopping is responsible for a majority of the probe transport within the film.;Lastly, preliminary methods are presented to determine physical diffusion of a probe at a modified electrode by sweep voltammetry.
机译:用聚合物薄膜改性的电极具有独特的渗透性。电活性氧化还原探针从溶液分配到薄膜中,并在电极上被电解。这产生了进入聚合物膜的探针通量,并且产生了从聚合物膜出来的电解探针通量。探针穿过薄膜的传输受扩散和迁移的控制,在数学上,Nernst-Planck方程将其描述为Ji&parl0; x,t&parr0; =-Di6 Ci&parl0; x,t&parr0; 6x- ziFRTDiCi&parl0; x,t&parr0; 6F&parl0; x ,t&parr0; 6x,其中x是与电极的距离,t是时间,Ci(x,t)是探针i的空间和时间依赖性浓度,zi是探针i的电荷,F是法拉第常数,R是气体常数,T是绝对温度,J i(x,t)是探针i的通量,Di是探针i的扩散常数,phi(x,t)是时空相关的电位。在自然系统中,电荷积累不明显,带电离子被抗衡离子中和。电中性在数学上由拉普拉斯在电势62F&parl0; x,t&parr0;上的条件表示。在抗衡离子不足以中和离子的系统中,局部电子中性由局部电荷设定,泊松方程取代拉普拉斯的条件为62F6x 2 = -F3 iziCi&parl0; x,t&parr0; 6x2 = 0。其中ε是相对介电常数。泊松条件下的能斯特-普朗克没有得到解析解决。 F /ε的极值会产生一个系统,该系统可抵抗标准技术的溶液。在不考虑电子中性的前提下,研究的第一个系统确定了燃料电池聚合物膜上的浓度和电势分布。在研究的第二个系统中,探针的物理运动受到严格限制。这给出了具有空间变化的扩散系数结果的Nernst-Planck方程的更一般形式,J = -D& x,t&parr0; 6C&parl0; x,t&parr0; 6x-zFRTD&parl0; x,t&parr0; C&parl0; x,t&parr0; 6F&parl0; x,t&parr0; 6x。 D(x,t)是随时间和空间变化的扩散系数,可以包括物理位移项和电子跳跃项。本文研究的第二个系统是修饰电极系统,其中电子跳跃是膜中大部分探针传输的原因。最后,提出了通过扫描伏安法确定修饰电极上探针物理扩散的初步方法。

著录项

  • 作者

    Schmidt, Stephanie Ann.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Applied Mathematics.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号