首页> 外文学位 >Computational study of the oxygen-oxygen bond activation and hydrocarbon oxygenation reactions in the catalytic cycles of the non-heme diiron enzymes and chiral manganese(Salen) complexes.
【24h】

Computational study of the oxygen-oxygen bond activation and hydrocarbon oxygenation reactions in the catalytic cycles of the non-heme diiron enzymes and chiral manganese(Salen) complexes.

机译:非血红素二铁酶与手性锰(Salen)配合物催化循环中氧-氧键活化和烃氧合反应的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Density functional methods have been applied to study the catalytic cycle of the (Salen)MnIII based Kochi-Jacobsen-Katsuki (KJK) catalytic system for enantioselective epoxidation of unfunctionalized olefins. In particular, comparative study of electronic and geometric properties of MnV and MnIV oxo species, as well as iso-electronic MnV nitrido species have been performed. Internal oxidation of the oxo species into stable N-oxo species has been studied. Furthermore, formation of Mn-oxo species from organic peracids and/or mixture of O 2/aldehyde during the catalytic cycle has been investigated. Various acylperoxo complexes have been identified as precursors for the oxo species formation. The O-O bond cleavage in the acylperoxo complexes has been studied at different reaction conditions. Namely, the axial ligand and acidity effects on the O-O bond cleavage, which mimic "push" and "pull" effects operating in enzymes, along with solvent effect have been elucidated. The factors determining the mode of the O-O bond cleavage have been revealed. Finally, the epoxidation by acylperoxo complexes and by oxo species has been studied with and without axial ligands. Multiple approaches of the olefin to the reactive oxygenating species have been identified even for unsubstituted Salen ligand. The obtained data advances understanding the epoxidation mechanism and the origin of the enantioselectivity in the KJK system. In addition to synthetic KJK system, the structure of the di-iron active sites of the reduced and oxidized forms of Methane Monooxygenase Hydroxylase (MMOH) and Ribonucleotide Reductase (RNR) enzymes have been elucidated in the protein with ONIOM(DFT:MM) method. For this purpose a general methodology was developed to set up large protein models. Furthermore, a new ONIOM coupling scheme for electrostatic interactions, called QM-adapted Charge Mechanical Embedding (QMC-ME), has been proposed, implemented and applied. The new scheme allows adequate study of the reactions with significant charge redistribution/transfer in the QM region. By using these new methodologies the identity of the ambiguous ligands in the oxidized active sites has been scrutinized. The mechanisms of the molecular oxygen activation by the di-iron active sites of MMOH and RNR have been investigated.
机译:密度泛函方法已用于研究基于(Salen)MnIII的Kochi-Jacobsen-Katsuki(KJK)催化体系对未官能化烯烃的对映选择性环氧化的催化循环。特别是,已经进行了MnV和MnIV氧代物质以及等电子MnV亚硝基物质的电子和几何性质的比较研究。已经研究了将氧代物质内部氧化为稳定的N-氧代物质。此外,已经研究了在催化循环中由有机过酸和/或O 2 /醛的混合物形成Mn-氧代物种。各种酰基过氧配合物已被确定为氧代物质形成的前体。在不同的反应条件下,研究了酰基过氧配合物中O-O键的裂解。即,已经阐明了轴向配体和酸度对O-O键裂解的影响,其模拟了在酶中起作用的“推”和“拉”效应,以及溶剂效应。已经揭示了确定O-O键裂解方式的因素。最后,研究了在有或没有轴向配体的情况下,酰基过氧配合物和羰基化合物的环氧化作用。即使对于未取代的Salen配体,也已经确定了烯烃与反应性氧合物种的多种途径。获得的数据进一步了解了KJK系统中的环氧化机理和对映选择性的起源。除合成KJK系统外,还通过ONIOM(DFT:MM)方法阐明了蛋白质中甲烷单加氧酶羟化酶(MMOH)和核糖核苷酸还原酶(RNR)酶的还原和氧化形式的二铁活性位点的结构。 。为此,开发了一种通用的方法来建立大型蛋白质模型。此外,已经提出,实施和应用了一种新的用于静电相互作用的ONIOM耦合方案,称为QM自适应电荷机械嵌入(QMC-ME)。新的方案允许对在QM区域发生大量电荷重新分布/转移的反应进行充分的研究。通过使用这些新方法,已仔细研究了氧化活性位点中歧义配体的身份。已经研究了通过MMOH和RNR的二铁活性位激活分子氧的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号